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ABSTRACT 

The locations of interface objects (e.g., buttons, menu items) are central and 

necessary components to direct manipulation; to be used, these objects must be 

located, pointed at, and clicked on. Knowledge of the locations of sought-after objects 

can significantly reduce the visual search space and thus reduce performance times. 

Research indicates that people do indeed learn the locations of interface objects and use 

this location knowledge to improve performance. The question of how the impetus and 

opportunity for location learning change as a function of the cost structure of an 

interface was explored via a two-phased approach; the first part empirical, and the 

second analytical. The empirical phase was comprised of two experiments. The first 

experiment employed an incidental learning paradigm in which participants perform a 

search and select task and were subsequently forced to rely on their location knowledge. 

Experiment II used the same search and select task as Experiment I, but involved the 

collection of eye gaze data as a longitudinal and direct behavioral measure of location 

learning.  

The results of these experiments were used to constrain the behavior of a 

computational cognitive model in the second phase of the project. The model, built using 

ACT-R/PM (Anderson, 1993; Anderson & Lebiere, 1998; Byrne & Anderson, 1998), 

interacts with the same experimental task as the participants. Guided by the assumption 

that participants acted rationally, seeking maximum gain at minimum cost, the model 



 

provided a compelling and detailed account of key attributes of participant’s behavior, 

from fine-grained components of interaction such as eye and mouse movements to 

higher order measures such as performance time. An analysis of the underlying 

assumptions and behavior of the model yielded three primary implications for a theory of 

location learning: (1) locations are encoded as a by-product of attention, (2) once 

encoded in memory, location knowledge is subject to the same mechanisms as other 

declarative knowledge, such as associative learning and decay, such that, (3) the ability 

to retrieve location knowledge, like other knowledge (e.g., a phone number), requires 

repetition, practice, or explicit rehearsal.  

The empirical results, taken together with inferences drawn from the behavior of 

the model, demonstrated that location learning is not only pervasive, but also subject to 

the cost structure of the interface. As the cost of relying on labels to locate the 

currently needed interface object (search cost) increased, so did the rate of location 

learning and reliance on location knowledge. Likewise, as the cost of relying on an 

object’s label to evaluate whether that object is indeed the one currently needed 

(evaluation cost) increased, so did the reliance on location knowledge. Consistent with a 

rational analysis perspective, participants came to learn and rely on location more quickly 

when the interface provided them with no less-effortful alternative.  
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INTRODUCTION AND OVERVIEW 

In graphical user interfaces (GUIs), the location of a given interface object, such 

as a button or menu item, must be determined before the object can be acted on (i.e., 

user must move the cursor to the location and then click). As Jones & Dumais (1986) 

put it “It is not enough to know what we are looking for; we must also know where to 

look for it” (p. 43). Knowledge of an object’s location on screen is a necessary and 

sufficient cue for task performance - the user merely needs to move visual attention and 

the cursor to the location and then perform the appropriate action. Thus, knowledge of 

the desired object’s location obviates or at least restricts the scope of the visual search 

undertaken to locate that object.  

The restriction of the visual search space, in turn, has the potential to 

significantly improve task performance by reducing the time required to conduct the 

search, especially in visually cluttered interfaces. This is particularly relevant in light of 

ever-increasing functionality and concomitant visual complexity in software. As an 

example, Microsoft® Word 98 contains 11 menu items on the menu bar and defaults to 

approximately30 buttons on two toolbars, with more toolbars and buttons available as 

the user changes modes. Thus, a top level search (i.e., not including the items contained 

in the menus) would require the user to consider as many as 41, and an average of 

about 20, interface objects to locate the one currently needed. Even knowledge of the 

currently needed object’s approximate location can significantly reduce the number of 

objects to be considered, and thus, the time required to conduct the search. 
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Although an object's location may be a necessary and sufficient cue that can 

improve performance, it is only one of a number of cues available in a typical interface. 

Each of these cues has strategies and costs associated with it. For example, each of the 

buttons on the Word toolbar has an icon. If the icon is representative of the button’s 

function, it is possible to quickly determine whether the button will satisfy the user’s 

current goal. If the button’s function is not clear from its icon, at the cost of a mouse 

movement and a one second wait, a text description of the button’s function (called a 

ToolTip) can be accessed. Because of the additional time required to access a ToolTip, 

the cost of a strategy that entails waiting for ToolTips can be said to be higher than one 

which entails simply evaluating the icon with regard to the current goal.  

Rational analysis, a theoretical perspective put forth by Anderson (1991, 1993; 

Anderson & Lebiere, 1998), assumes that human behavior is an optimal response to the 

structure of the environment, such that humans tend to rely on cues and strategies that 

maximize the difference between cost of mental effort and expected gain in achieving 

goals. Taking this perspective, the cost structure of the interface (i.e., the cost 

associated with the available cues and strategies) has the potential to significantly 

impact learning and reliance on location knowledge, such that users will rely on location 

only to the extent that the interface provides them with no lower-cost alternative. 

Research demonstrating that users eventually learn interface object locations with 

experience, however, suggests that location learning is pervasive and may occur 

regardless of interface cost. 

Drawing from the location learning literature and the rational analysis perspective 

described above, the primary goal of this dissertation is to explicate the interaction 
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between location learning and interface cost, and in doing so, provide a rationality-

guided account of location learning in interaction with a graphical user interface (GUI). 

The project proceeds in two phases, an empirical phase, comprised of two experiments, 

and an analytical phase, in which the data from the experiments are used to constrain 

the behavior of a computational cognitive model that acquires and uses location 

knowledge. The model, by virtue of being built within the ACT-R/PM simulation 

environment (Byrne & Anderson, 1998), inherits components of rational analysis 

embedded in the underlying ACT-R cognitive architecture.  

An understanding of the manner and conditions under which location information 

is learned as users gain experience is critical in understanding how users interact with 

such systems in general and can shed theoretical light on location-related HCI design 

guidelines. In particular, such an explanation could provide a theoretical basis for the 

well-known positional constancy guideline, which recommends that the location of 

information on screen remain constant.  

The paper begins with a brief review of theoretical and applied research on 

memory for object locations. In particular, the section focuses on the extent to which 

locations are learned in various tasks and summarizes current research on location 

memory. This is followed by a discussion of the extent to which humans interact with 

their environment in a rational manner, and the development of an account of how this 

may affect location learning on various tasks. The hypotheses generated by this account 

are then introduced. The research then proceeds in the two, empirical and analytical, 

phases described above. The theoretical and applied implications for this work (both the 

empirical results and model) are then derived and discussed.  
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THEORETICAL BACKGROUND 

Location Memory Research 

Location Learning in HCI 

Studies in which the locations of interface items are held constant over trials 

provide clear evidence that participants eventually learn the locations of those items. 

Most of these studies employ a search and select paradigm in which participants are 

given a target item and are required to find that item in some arrangement of candidate 

items. In some studies, the target item is a word and the candidate objects are also 

words arranged in various orders, e.g., alphabetically, categorized, or random (Card, 

1984; Mehlenbacher, Duffy, & Palmer, 1989; Somberg, 1987; Vandierendock, Hoe, & 

Soete, 1988). In others, participants are given descriptions of commands and are 

required to select the icon or menu item associated with the command (Blankenberger & 

Hahn, 1991; Kaptelinin, 1993; Moyes, 1994; Moyes, 1995).  

As an example, Somberg (1987) had subjects search for target words in four 

different orderings of menu items: alphabetic, probability of use, random, and 

positionally constant. The results indicated that only the subjects in the positionally 

constant condition improved performance over the 492 trials (and had still not reached 

asymptote). Further, the positionally constant group, which started out faster than the 

random group but slightly slower than the alphabetic and probability of use groups, was 

significantly faster than all of the other groups after 246 trials.  
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Somberg’s (1987) results are consistent with those of the other research cited 

above; when the locations of items remain constant, performance improves over trials as 

participants reduce the scope of their visual search. In some of these studies, the scope 

of search is sufficiently reduced in later trials to eradicate performance differences 

between menu organization schemes and icon representativeness which existed in early 

trials (Blankenberger & Hahn, 1991; Card, 1984; Mehlenbacher et al., 1989; Moyes, 

1995). 

Studies including conditions in which the positions of items are not constant, i.e., 

randomized between trials, show either no improvement over trials (Kaptelinin, 1993; 

Somberg, 1987), or only modest improvement (Blankenberger & Hahn, 1991). In this 

latter case, the improvement can be attributed to continued learning of the mapping 

between the command used as a cue and its associated icon. 

Interview-based studies of users’ everyday interaction with GUIs also provide 

supporting evidence for a reliance on location information. Barreau and Nardi (1995) 

synthesized studies of Macintosh and PC users and found frequent use of desktop 

locations (the operating system’s desktop) for organizing and reminding. A large 

proportion of users, for example, would place frequently used, current or otherwise 

significant files in specific locations on the desktop. They also found an “overwhelming” 

preference for location-based file searches (e.g., starting at the hard drive and drilling 

through the file hierarchy rather than initiating a text-based search). Kaptelinin (1996) 

reported similar findings. 
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Location Memory in Problem Solving and Reading 

There are studies in the areas of problem solving and reading which also provide 

supporting evidence for the learning and use of location information in task performance. 

A study of equation problem solving by Anderson, Matessa and Douglass (1995), 

showed that participant performance improvement over trials was largely attributable to 

a decreased number of eye fixations on the equation components (i.e., numbers and 

operators) rather than decreased duration of the fixations. This led them to conclude 

that  

…we have discovered that an important component of the learning (indeed the 

majority of the time savings) that is going on in this experiment is due to improved 

strategies for scanning the equation...This research indicates that an important 

component of skill development is learning where critical information is to be found 

in the visual interface (p. 64) 

In a study on memory for words and their locations in prose, Lovelace and 

Southall (1983), found that providing participants with the location of a particular word 

as a retrieval cue significantly improved participant’s recall of that word. An extreme 

form of this ability is reported in Stratton’s (1917) description of the Shass Pollak, 

memory experts who are reportedly able to recall any word from the 12-volume Talmud 

given a page number and a location on the page. A closely related form of this ability 

underlies the well-known Method of Loci memory strategy, which entails placing objects 

to be remembered in various locations and then later using that location as a cue for 

recall. 
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The Cost of Location Learning 

There is a literature to suggest that the cost of encoding object locations, a 

prerequisite for learning them, may be very low. In a 1979 paper, Hasher and Zacks 

claimed that the encoding of spatial information is an automatic process. By virtue of 

being automatic, the process of encoding spatial location encoding is purported to be 

unaffected by intent, task demands, age effects, practice, strategy manipulations or 

individual differences. Most of the subsequent research testing these claims uses a 

single-trial spatial memory paradigm in which participants study a matrix of objects for 

some short period of time, and then are required to either recall or recognize the objects 

and their locations. This is done under conditions designed to test various of the six 

criteria listed above.  

The results from this research are mixed, with some researchers claiming that 

spatial encoding is automatic (Andrade & Meudell, 1993; Postma & DeHaan, 1996) 

whereas others claim it is not (Naveh-Benjamin, 1987; Naveh-Benjamin, 1988). The 

primary point of contention stems from a methodological flaw Andrade and Meudell 

(1993) claim exists in the Naveh-Benjamin (1987, 1988) experiments; namely that 

Naveh-Benjamin's test of spatial memory improperly included location memory scores for 

objects in the matrix that participants may not have remembered seeing. To correct the 

flaw, Andrade and Meudell measured contingent spatial memory (i.e., memory only for 

correctly recognized objects) and, consistent with Hasher and Zacks' (1979) assertion 

of automaticity, found no effect of task demands or intent on spatial memory.  

In more recent research, Postma and DeHaan (1996) set out to evaluate the 

criterion that spatial encoding would not be disrupted by other task demands. They used 
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a task similar to the single-trial memory paradigm described above, having participants 

perform the task under varying levels of difficulty (number of items in the matrix) and 

under a dual task condition (using articulatory suppression). Based on the results of a 

series of experiments, the authors posited the existence of two separate processes 

underlying object location memory. The first process, which was demonstrated to be 

largely unaffected by articulatory suppression and task difficulty, is responsible for 

encoding the positions per se (i.e., that there was an object at a given location). The 

second process, which was shown to suffer under articulatory suppression and more 

difficult task requirements, is responsible for associating a particular object to a 

particular location (i.e., what was where). Thus, Postma and DeHaan made a distinction 

between encoding a location, which is automatic, and associating the location with an 

object so that may be retrieved later, which is not automatic.  

Such a distinction is quite compatible with the association-based theory of 

memory in ACT-R/PM (Anderson & Lebiere, 1998; Byrne & Anderson, 1998). In the 

runnable implementation of ACT-R/PM, the locations of objects are encoded as a by-

product of conducting a visual search. By virtue of having been encoded, there is a 

memory representation of the location which is potentially retrievable. In order to be 

retrieved, the representation's activation level, which can be thought of as the 

representation's utility given its history of use and the current retrieval cues, must 

exceed some threshold value. Thus, the fact that a location has been encoded provides 

no guarantee that it can be retrieved for later use. As a particular location is re-encoded 

or retrieved, its activation level, and concomitantly its probability of retrieval, increases, 

leading to the prediction that locations searched repeatedly can eventually come to be 
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retrieved and used in the context of task performance. Thus, this explanation accounts 

for the relatively modest incidental location memory recall in the short term (Andrade & 

Meudell, 1993; Naveh-Benjamin, 1987), and the finding that people do eventually seem 

to learn the locations of objects in the long term (e.g., Anderson et al., 1995; 

Blankenberger & Hahn, 1991; Somberg, 1987). 

Summary 

This section has summarized research from the area of HCI, problem solving, 

document layout and cognitive psychology on learning and reliance on object location. 

These studies provided evidence that people eventually learn the spatial locations of 

items in the world. This learning was shown to occur not only in tasks where learning 

locations could potentially improve performance, such as menu selection and equation 

problem solving, but also in tasks where no discernable benefit existed, such as reading. 

This suggests that location learning is quite pervasive. Although there remains some 

controversy as to the extent to which locations are encoded in memory automatically, 

i.e., without explicit effort or intent, the research suggests that locations may be learned 

to a modest degree as a by-product of interaction. An account of these findings was 

then briefly sketched in the context of ACT-R/PM. 

Effort, Strategy and Rationality 

Humans maintain what might be termed an inter-formative relationship with their 

environment. On the one hand, we have to exist in our environment so we shape it to 

suit our needs. On the other, to the extent that our behavior is constrained by and 

adapted to the structure of our environment, it shapes us as well. Determining whether 
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to change the environment or adapt to it is partially a function of the effort involved in 

doing one versus the other. In most everyday tasks, such as interacting with a 

computer, the effort required to substantially change the environment is well beyond 

what we are willing or able to expend (though with less effort we can write macros, 

modify menus, etc.), so to achieve our goals we are usually forced to adapt. 

The manner in which we adapt can also be viewed as being a function of effort. 

Anderson has taken this perspective (1991, 1993; Anderson & Lebiere, 1998), 

advancing a rational theory of cognition and an associated methodology called rational 

analysis. Underlying both of these is the assumption that behavior is somehow optimized 

to the structure of the environment. Rational analysis has been applied to various 

aspects of human behavior such as memory categorization, causal inference and problem 

solving. The assumptions derived from these analyses are core components of the ACT-R 

cognitive architecture. The ACT-R architecture has been implemented in Common Lisp as 

a production system-based simulation environment, also called ACT-R. A recent addition 

to ACT-R is the perceptual and motor component ACT-R/PM (Byrne & Anderson, 1998), 

which includes a theory of visual attention and also allows explicit modeling of 

interaction with the external environment.  

Implied by the ACT-R/PM architecture is the prediction that people will tend to 

behave in a manner that maximizes the difference between the cost of mental effort and 

expected gain. It turns out that, all other things being equal, the lowest effort strategies 

tend to be those that entail accessing perceptually-available information rather than 

those that require learning and recalling the required knowledge (Norman, 1988; Zhang 

& Norman, 1994). An example of this is reliance on address books or phone presets 
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instead of memorization of phone numbers. In this case, the individual relies on 

perceptual and motor operators to acquire the necessary information instead of 

cognitive ones. 

There is ample empirical support for the idea that humans tend to choose least 

effort strategies. This support comes from performance-based studies, where the 

performance and strategies used by participants are observed and analyzed as a 

function of task manipulations, as well as knowledge-based studies, where participants 

are given recall or recognition tests to determine the extent of their knowledge about 

often-used objects. 

Ballard, Hayhoe and Pelz (1995) found that in lieu of encoding the required 

information at the beginning of their task and retaining it throughout, participants 

instead relied on a perceptually driven strategy to pick up information as needed. 

Interestingly, when Ballard et al. increased the cost of information acquisition (and thus, 

the cost of the perceptual strategy), the frequency of this strategy decreased sharply in 

favor of a more memory intensive one. Lohse and Johnson (1996) also found 

differences in strategy as a function of the cost of acquiring information. Specifically, 

they found that increasing the cost of information acquisition resulted in more frugal and 

systematic visual search and increased dependence on working memory. 

The cost of performing actions in a given task also affects the strategies chosen 

by participants. O’Hara and Payne (1998) found that increasing the operator 

implementation cost in solving the 8-puzzle (e.g., increasing the number or keypresses 

required to perform a given action) increased the tendency to plan problem solving 

actions, as opposed to the adoption of an opportunistic and perceptually-driven, hill-
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climbing strategy. Gray (in press) has found that errorful and error-free performance of 

an interactive programming task (programming a VCR) are very well characterized in 

terms of the constraints imposed by the device interface and what he terms "display-

based difference-reduction". Display-based difference-reduction refers to a dependence 

on the device interface for information on the status of the task performance, rather 

than maintaining that information in memory. 

Zhang & Norman (1994) conducted a series of studies using isomorphs of the 

Tower of Hanoi and found that embedding the rules of the problem in perceptually and 

culturally available constraints in the task environment led to fewer errors and faster 

performance overall than when those rules had to be represented internally (i.e., 

memorized). Other research using Tower of Hanoi isomorphs has likewise revealed the 

importance of external problem representation in making problem solving easier 

(Kotovsky, Hayes, & Simon, 1985). Such a problem representation enabled problem 

solving to follow a perceptual strategy in which each move was cued by the perceptual 

states of the puzzle, rather than one involving computationally intensive planning 

(Simon, 1975). 

If people tend to leave knowledge in the world to be gathered as needed during 

task performance rather than internalizing it, memory for those aspects of the world 

should be quite poor. There have been a number of studies that have indeed shown this 

to be the case. Memory for details of pennies (Nickerson & Adams, 1979), numbers and 

letters on telephone dials (Morton, 1967), and graphical user interfaces (Mayes, Draper, 

McGregor, & Oatley, 1988; Payne, 1991; Smelcer & Walker, 1993) has been shown to be 

remarkably poor, even for individuals with a fair amount of experience with the items. 
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Summary 

The picture painted by this research is one in which humans are sensitive to task 

demands, generally taking the path of least effort. The path of least effort is often one 

that relies on information available in the external environment and perceptual rather 

than memory and cognitive processes. Dependence on cognitive operators (e.g., 

memory retrieval and planning) is generally minimized unless the effort required by such 

a dependence is less than the effort required by the alternative perceptual and motor 

operators.  

Rationality and Display-Based Interaction 

Given the critical constraining role of the environment suggested by these data, 

various researchers have advocated different means of incorporating features of the 

environment into efforts aimed at understanding or predicting behavior: a task analysis 

that seeks to identify the paths of rational behavior through a given task (Card, Moran, & 

Newell, 1983); representational analysis, where the task is broken down into its internal 

and external representations (Zhang & Norman, 1994); restriction of the exploration of 

cognition and behavior to the specific situations in which they occur (Suchman, 1987); 

and the development of a cognitive architecture containing the guiding principle that 

cognition is optimized to the statistical structure of the environment (Anderson, 1990; 

Anderson, 1993; Anderson & Lebiere, 1998). 

A significant portion of the work prompted by this research is in the area of 

human-computer interaction (HCI), particularly in modeling user interaction with 

graphical user interfaces. The primary interpretation of this work is that users interact 
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with interfaces in a recognition-driven manner, such that the label of the appropriate 

item is recognized in the course of task performance, as opposed to being recalled prior 

to acting on the display. This interpretation is at the core of a number of models of 

display-based interaction, including D-TAG, Howes and Payne’s (1990) display-based 

extension to Task Action Grammars (Payne & Green, 1986), Howes’ (1994) Ayn model 

of learning menus by exploration, and Howes and Young’s (1996) TAL model that learns 

mappings between the tasks and actions required by the interface and can perform 

without requiring recall of labels. 

Display-based strategies are also implicated in studies and models of exploratory 

learning of graphical user interfaces. Most of the empirical basis for this work comes 

from Franzke (1994), who studied the effects of type of interface action, number of 

candidate objects on screen, and the quality of object label on learning by first-time 

users of graphing software. The results showed a heavy reliance on searching or 

scanning of object labels to match task goals. Several computational cognitive models 

have implemented this strategy including the IDXL model from Rieman, Young & Howes 

(1996) and the LICAI model from Kitajima and Polson (1997). 

This work in display-based HCI, though capturing critical aspects of interaction, 

focuses primarily on the semantic properties of the display, in particular, the labels. 

There are a multitude of other attributes of objects on display screens which could also 

serve to guide and constrain performance including: the non-textual features of the 

object’s label, such as an icon or a formatted label, the size of the object, the location of 

the object, the state of the object (e.g., enabled, disabled, highlighted, etc.), the 

object’s visible contents, such as the items in an opened menu or in a list box, and the 
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object type (e.g., button, menu, check box, etc.). Given the quintessential role spatial 

location plays in GUIs, it is somewhat surprising that the relationship between display-

based interaction and location learning has not yet received much attention in the 

literature. 

Rationality, Display-Based Interaction, and Location Learning 

An object’s location is typically not a meaningful indicator of the underlying 

function or purpose of that object. Rather, its label is typically far more salient and 

useful (Jones & Dumais, 1986). However, an object’s label can vary widely in the extent 

to which it represents the underlying function or meaning of the object. In interfaces 

with good, representative labels, even novice users can recognize an object as being the 

correct one because the label coincides with their existing knowledge and/or current 

goal (Franzke, 1994; Franzke, 1995; Jones & Dumais, 1986; Polson & Lewis, 1990). 

Such users can rely on the close association between the label and the function of the 

object from very early on in their experience with the interface. In cases where a label is 

poor, however, users would be forced to learn the association between the label and 

function. Such a case requires incurring the cost of learning to associate two previously 

unassociated or weakly associated items. 

The cost of strengthening this association may meet or even exceed the cost of 

learning to associate the function of the object with its location, also an initially weak 

association. This suggests that users of poorly labeled interfaces may rely more on 

location than on the label in the context of performance. Moyes (1994) explored this 

question by presenting various commands to participants (e.g., delete a document) and 
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having them search for and select the icon associated with the command. Half of the 

participants used icons which were representative of the command, and the other half 

used icons with no relationship to the command at all (called abstract). Following five 

uses of each of the 17 icons in the study, Moyes switched the positions of the icons for 

half of the participants, and switched the labels for the other half (e.g., representative 

switched to abstract and abstract switched to representative). The results showed that 

whereas participants in the abstract position-switch condition suffered significant 

performance disruption, the participants in the representative position-switch condition 

did not, thus supporting the hypothesis that rather than incurring the cost of associating 

the icon with the command and relying on icon recognition, abstract position-switch 

participants instead relied on icon positions. 

This relationship does not seem to hold as participants become more 

experienced. In a follow-up study, Moyes (1995, experiment 6) increased the number of 

trials participants completed before the switch was imposed from 5 to 20 uses of each 

icon and found significant performance disruption for both the abstract position switch 

and representative position switch groups, suggesting that both of these groups were 

relying in part on location. Evidence that both groups learned icon locations also came 

from mouse movement data indicating the presence of pre-emptive moves toward the 

correct icon’s location before the icon was visible. This study also provided evidence 

contrary to the hypothesis that both representative and abstract icon groups were 

relying solely on location to guide performance. This evidence comes from a condition in 

which the icons remained functionally in the same position but the icons were all 

replaced with blank outlines after 20 blocks. The results showed that participants in both 
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the abstract to blank and the representative to blank conditions suffered significant 

performance disruption. If participants knew the locations of the icons and were ignoring 

labels altogether before the changeover condition, then there should have been no 

disruption. The disruption did not last long for these groups, however, as they were able 

to use knowledge of location to recover to previous levels of performance after only 3 

blocks. Interestingly, the position switch groups were unable to recover to previous 

levels at all, even after 20 more blocks. 

From the results of these studies emerges an apparently complex sketch of the 

interaction between label meaningfulness, location learning and experience. Early on in 

performance, if an object’s label is meaningful, participants do not seem to rely on the 

object’s location. Over trials, however, these participants acquire the ability to use 

location knowledge during task performance, but still seem to rely in part on the label. If 

the labels are arbitrary, then participants learn location earlier on in performance than if 

the labels are meaningful, but still appear to rely in part on the labels after many trials. 

A Rational Interpretation 

A more concise account for Moyes' pattern of results can by attained by 

examining the relative costs of the task conditions and adopting the assumption that the 

participants in the experiment were always choosing the lowest effort means of 

completing the task. The representative icons provided a lower cost means of 

determining what a particular button did than the abstract icons. To the extent that the 

abstract icons required as much or more effort to interpret than the effort required to 

learn and rely on location, then participants came to rely on location as well as the icons. 

The representative icon condition enabled a display-based strategy for evaluation, i.e., 
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relying on the inherent meaningfulness of the labels in order to determine the purpose of 

the button instead of expending the effort to learn and rely on location. 

This begs the question of why participants in the representative condition would 

have learned the locations at all. The answer may lie in the previously discussed research 

suggesting that locations can be learned incidentally. Both the meaningful and arbitrary 

conditions required a deliberate search of the alternative icons on screen before the 

correct icon could be located. Even though icons were easier to evaluate for the 

representative group, this group still had to evaluate multiple alternatives if the location 

of the correct one was unknown. Thus, even participants in the representative group 

could improve performance by learning locations. The critical trade-off was between the 

effort required to learn locations versus the effort required to attend to and evaluate 

multiple icons. To the extent that locations could be learned incidentally and gradually 

via experience, by the later trials these participants would have eventually learned the 

icon locations.  

The explanation above draws from both the rational analysis perspective as well 

as the literature on location learning discussed above. If it is the case that location 

learning occurs as a by-product of interaction, then the locations of all positionally 

constant interface objects should eventually be learned with experience. However, if 

participants are using least effort, display-based strategies, as the rational analysis 

perspective implies, the rate of learning and level of reliance on location knowledge 

should differ as a function of interface cost, such that the rate of learning and level of 

reliance will increase as the cost of relying on alternative interface cues increases. 
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Although this theoretical account of the relationship between interface cost and 

location learning can explain the results of the two Moyes studies described above, a 

post hoc explanation is not sufficiently compelling. What is required is integrated, 

focused research incorporating the effects of a relatively wide range of interface costs 

on location learning. In the current research, interface cost is manipulated by varying the 

representativeness of interface object labels and location knowledge is measured at 

various levels of participant experience with those objects. The experimental task and 

specific hypotheses are outlined below. 

Current Research 

The theoretical account above will be explored in the context of a button-based, 

search and select task. In this task, participants are shown a color and twelve buttons. 

Each button is mapped to one of the twelve colors used in the task. They are instructed 

to locate and click the button associated with the color. The button locations and color 

to button mappings remain constant. There are four different versions of the interface 

for this task, each with its own set of button labels. The label sets differ in the extent to 

which they are representative1 of the color applied by the button (see Table 1): the 

most representative labels (color-match), are blotch-shaped icons identical in color to 

the color applied by the button, the second most representative labels, (meaningful) are 

the names of the colors applied by the buttons, the arbitrary labels are icons that are 

not at all representative of the colors, and in the fourth version of the interface (no-

label), the buttons have no labels. 

                                            
1 Label representativeness refers to the assumed strength of prior relationship between the perceptual 
experience of the colors used in the experiment and the label types. 
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Table 1. Representativeness, search cost and evaluation cost for the four label types. 

Label Type Representativeness Search Cost Evaluation Cost 

 
Color-Match Very High Low Very Low 

 
Meaningful High High Low 

 
Arbitrary Low High Moderate 

 
No-Label Low High High 

 

The label types were designed so as to vary the cost of relying on the labels for 

two major phases of performance on this task: the search phase and the evaluation 

phase. The evaluation phase entails determining whether a particular button applies the 

desired color, and the search phase entails choosing which button to evaluate. Cost 

differences in the search phase (search costs) exist between the color-match condition 

and all other conditions. The colors on the color-match labels produce a pop-out effect, 

a phenomenon in which the color being sought is readily identified among a series of 

distractors (Triesman & Gelade, 1980; Triesman & Souther, 1985). As such, the location 

of the correct button can identified via automatic detection (Schneider & Shiffrin, 1977; 

Shiffrin & Schneider, 1977). The lack of a pop-out effect in the meaningful, arbitrary and 

no-label conditions requires that a controlled search (Schneider & Shiffrin, 1977; Shiffrin 

& Schneider, 1977) be undertaken, i.e., deliberate eye movements be made around the 

interface until the required button is located. Thus, the search cost, which will be 
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operationalized as the number of buttons which must be evaluated before locating the 

correct one, is considered to be low for the color-match labels and high for the 

meaningful, arbitrary and no-label labels (see Table 1). 

Cost differences in the evaluation phase (evaluation costs) exist between all label 

types (see Table 1). Evaluation cost is operationalized as the time required to determine 

if the currently attended button is the one currently needed. The color-match labels 

simply require comparing the color of the label to the rectangle color and thus incur a 

very low evaluation cost. The meaningful labels also only require a comparison, but 

because the text label must first be read before it can be compared to the name of 

rectangle color, the evaluation cost is slightly higher. The arbitrary labels provide no clue 

as to the colors associated with the buttons, but still serve to uniquely identify the 

buttons, thus, the arbitrary labels are considered to incur a moderate evaluation cost. If 

the buttons have no labels, there is a high evaluation cost.  

Based on the theoretical account and the structure of the task and label types 

described above, there are two parallel hypotheses, one for each of the two phases of 

task performance. 

Search Cost Hypothesis 

There is a positive relationship between search cost and reliance on location 

knowledge such that users of higher search cost interfaces will come to rely on 

location knowledge in the search phase more-so than users of low search cost 

interfaces. 

To the extent that the interface requires a controlled search, as it would in the 

meaningful, arbitrary and no-label interfaces, object locations should be learned faster 
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than in an interface where search involves automatic detection, as it would in a color-

match interface. The pop-out effect available in the color-match interface provides a low 

cost, efficient means of locating the currently needed button, so a rational participant 

should come to rely on this perceptually available cue in lieu of location knowledge. In 

the absence of such a cue, the only way to avoid having to conduct a higher cost, 

exhaustive controlled search is to learn and rely on location knowledge. 

Evaluation Cost Hypothesis 

There is a positive relationship between evaluation cost and reliance on location 

knowledge such that users of higher evaluation cost interfaces will rely on location 

knowledge more in the evaluation phase than users of low evaluation cost 

interfaces. 

As discussed above, to the extent that learning and relying on an object's label 

to determine if it is the object currently needed is equivalently effortful to learning and 

relying on its location, then a rational participant should be as likely to learn and rely on 

location as on the label. If the labels are representative and thus enable the use of a less 

effortful, display-based label-matching strategy, then a rational participant should take 

this available least-effort path and come to rely primarily on the label instead of the 

location in evaluating a given object.  

Research Approach 

In order to evaluate the rational account of the relationship between search cost, 

evaluation cost and location learning outlined above, the current research takes a two-

pronged approach: the first part empirical, and the second analytical. The empirical prong 
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is comprised of two experiments. The first experiment employs an incidental learning 

paradigm in which participants perform the just-described search and select task and are 

unexpectedly required to rely on their location knowledge. The amount of disruption in 

task performance is taken as a measure of the level of reliance on location knowledge. 

The second experiment uses the same search and select task as Experiment I, but 

involves the collection of eye gaze data as a longitudinal and direct behavioral measure 

of location learning.  

The results of these experiments are used to constrain the behavior of a 

computational cognitive model in the second phase of the project. The model, built using 

ACT-R/PM (Byrne & Anderson, 1998), is intended as a formal instantiation of the 

theoretical account under scrutiny, and its ability to account for the empirical data is 

taken as an indication of the sufficiency of the account. The model interacts with the 

same interfaces as the participants and, as such, its performance is constrained to 

coincide with key attributes of participants' behavior, from fine-grained components of 

interaction such as eye and mouse movements to higher order measures such as the 

decreased performance time resulting from location learning. The behavior and 

components of the model are then analyzed with regard to research on display-based 

interaction and current cognitive theory on location memory.  
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METHODS – EXPERIMENT I 

Experiment I was designed to assess location knowledge under four different 

search and evaluation cost conditions and at two different levels of experience with 

interface objects. Search and evaluation cost were manipulated by varying the 

usefulness of the interface object labels. Location knowledge was assessed by analyzing 

performance when these labels were unexpectedly removed from the objects, thus 

forcing participants to rely solely on their knowledge of object location.  

Participants 

Seventy George Mason University undergraduates participated in the study for 

course credit. There were 18 males and 52 females approximately equally distributed 

within experimental groups. Participants were experienced with graphical user interfaces, 

reporting 532 hours of cumulative experience on average2. There were no differences in 

cumulative GUI experience between groups. 

Materials 

The experiment was conducted in a sound-controlled room using an Apple Power 

Macintosh and 17-inch color monitor. The software for presenting the experimental 

stimuli and collecting performance data was written in Macintosh Common Lisp.  

                                            
2 Cumulative experience was calculated by multiplying reported weekly usage (in hours) by 52 and the 
number of reported years of experience. 
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In the primary task, the software presented participants with a light gray screen 

that contained a centered 3 cm x 1.1 cm bordered white rectangle. After a delay of one 

second, a 2.8 cm x 0.9 cm colored rectangle appeared in the center of the white 

rectangle (see Figure 1a). This rectangle was one of 12 colors and contained seven 

white lower-case x’s. The twelve colors were: red, blue, light blue, green, light green, tan, 

brown, gray, orange, yellow, pink, and purple, which were chosen to be easily nameable 

and discriminable. The participant then clicked on the colored rectangle to display 12 

buttons arranged in a circle around it (see Figure 1b). The buttons were 1.5 cm square 

and had one of four label types (described below and shown in Figure 2). The 

participants’ goal was to find, point to, and click on the button that would make the 

white x’s the same color as the rectangle (i.e., make the rectangle appear solid). The 

buttons and their respective labels appeared in the same locations for a given 

participant, but was randomized between participants.  

To find out what color was associated with a particular button, the participant 

could: (1) refer to the label on the button, (2) move the cursor over the button and 

leave it there for one second to see a ToolTip, which was a 1.5 cm x 0.8 cm bordered 

rectangle containing three colored x’s displayed above and to the right of the button 

(see Figure 1c), or (3) simply move the cursor over the button and click.  

When the user clicked a button, the color of the x’s changed and all buttons 

disappeared (see Figure 1d). If the correct button was pressed, the rectangle appeared 

solid for 500 milliseconds and then disappeared. After a delay of 1 second, the next trial 

began. If the incorrect button was pressed, the computer emitted a series of 5 beeps, 

followed by the presentation of a dialog window informing the participant of the error. 
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At that point, the participant had to click a button to close the window and then would 

have to repeat the trial. The availability, but high time cost, of ToolTips and relatively 

high cost of errors were designed into the interface to facilitate and encourage the 

learning of button-color associations.  

 

 

Figure 1. The time course for a trial in the experimental task. 

 

The experimental software logged screen events such as mouse clicks on the 

colored rectangle and buttons, as well as accesses to ToolTips. The software also 

calculated performance measures, including trial time and accuracy, and wrote these 

data to a text file. 
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Design 

The design was a 3 (Label) x 2 (Assessment Time) x 2 (Frequency) mixed 

factorial with label and assessment time as between-subjects factors and Frequency as a 

within-subjects factor. The fourth label condition was a control. In this condition, the 

buttons had no labels throughout the experiment. The design is shown in Table 2. 

 

Table 2. The experimental design for Experiment I. Numbers in italics represent participants. 

Label Type Assessment Time Frequency Of Use 

  High Low 

Color-Match Early 1…10 1...10 

 Late 11...20 11...20 

Meaningful Early 21...30 21...30 

 Late 31...40 31...40 

Arbitrary Early 41...50 41...50 

 Late 51...60 51...60 

No-Label  61...70 61...70 
 

Independent Measures 

Label (Between-Subjects – 3 Levels, plus control) 

As described above, the four label conditions were designed to vary search and 

evaluation costs. To review, search cost is operationalized as the number of buttons the 

participant must evaluate before locating the currently needed one, and evaluation cost 

is operationalized as the amount of time the participant must spend determining 

whether or not the currently-attended button is the one currently needed. The four 
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conditions are described in detail below and a summary of the assumed costs by 

condition is presented in Table 1. 

In the color-match condition, the buttons were labeled with large colored, blotch-

shaped icons. The icon color was identical to the color applied to the x's when the 

button was pressed (see Figure 2a). This condition was designed such that participants 

could search pre-attentively for the correct button by matching the color of the 

rectangle against the blotch on the button, thus requiring that only one button be 

attended per trial. As such, this condition was considered to have a low search cost. 

Because determining whether a given button was correct only involved making a 

perceptual color match between the goal color and the button’s label, evaluation cost 

also was judged to be very low for this condition (see Table 1). 

In the meaningful condition, the buttons were labeled with color names (see 

Figure 2b). As such, participants had to perform a controlled search of the interface to 

find the correct button (i.e., the correct button could not be located pre-attentively as 

in the color-match condition). Because this would require attending to, on average, 6 

buttons per trial, this condition was considered to have a high search cost. However, 

because the participant needed only to read the text on the label to verify that it was 

the correct one, evaluation cost was considered to be low (see Table 1). 

In the arbitrary condition, the buttons were labeled with icons bearing no 

relationship to the color applied by the button (e.g., the button that applied blue had a 

plane icon; see Figure 2c). The mapping from color to icon was determined randomly at 

the beginning of the experiment and remained constant throughout. As in the meaningful 

condition, participants could not pre-attentively locate the correct button, thus incurring 
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a high search cost. Because evaluation required learning the association between the 

icon and the color applied by the button, relying on the ToolTips, or learning and relying 

on location, this condition was considered to have a moderate evaluation cost (see Table 

1). 

 

 

Figure 2. Screen snapshot for each of the four conditions in the experimental task. 

 

Finally, in the No-Label condition, the buttons were all unlabeled (see Figure 2d). 

Again, as in the meaningful and arbitrary conditions, participants could not locate the 

correct button pre-attentively, thus incurring a high search cost. The absence of labels 



30 

forces participants to rely on ToolTips or location knowledge, thus entailing a high 

evaluation cost (see Table 1). 

Assessment Time (Between-Subjects– 2 Levels, nested within Label) 

For the six experimental groups, reliance on location knowledge was assessed 

either early (after 6 blocks) or late (after 26 blocks) in the experiment. The assessment 

method entailed removing the button labels to force participants to rely on their location 

knowledge, and measuring the effect on performance, e.g., if a participant showed no 

disruption in performance after the labels were removed, it would be inferred that the 

participant had learned the object locations. To minimize disruptive effects in 

performance due to surprise or confusion, participants were shown the following 

message during the one-minute break given just prior to the assessment block:  

“When you return to the task, the buttons will all be in the same positions as 

before, but they will no longer have icons on them. They will stay this way for the 

rest of the task. Hint-boxes will still be available." 

For the meaningful group the word "text" was substituted for "icons". By giving 

warning just prior to removal of the label, participants had only minimal time to prepare 

for the change in conditions but yet were not surprised by the sudden sight of blank 

buttons on the screen.  

Frequency (Within-Subjects –2 Levels) 

In an attempt to investigate the effects of experience on location learning at a 

relatively fine grain, the 12 buttons used in the interface were randomly divided into two 

equal-sized groups at the beginning of the experiment. Six buttons were assigned to the 
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High Frequency group; these were needed twice per block. The six buttons in the Low 

frequency group were only needed once per block.  

Procedure 

The experimental procedure is represented schematically along with the 

experimental protocol in Appendix A. Participants began by completing a series of 

computer-presented pre-tests and training under the supervision of the experimenter. 

This was followed by the main experimental task (described above), a series of post-

tests, and an on-line questionnaire on computer experience, which were all completed in 

the experimenter's absence. Finally, participants were debriefed and asked about their 

strategy use. The pre-tests, training and post-tests are described below; screen snap-

shots of the tasks appear in Appendix B. 

The first task was a color training task, which was designed to introduce the 

colors needed in the main experimental task and also to ensure that participants had 

adequate color vision. Participants were shown a colored rectangle which was one of the 

12 experimental colors and were instructed to click on the name of that color from a 

pop-up menu that appeared to the right of the rectangle (Error! Reference source 

not found. in Appendix B). If an error was made, the correct response was provided via 

a dialog box. Participants were required to successfully complete at least one out of the 

three trials with each color before continuing the experiment. 

The next task was designed to control for individual differences in mouse 

movement speed in later analyses. In this task, participants were instructed to move to 

and click on a button which changed position when clicked (Error! Reference source 
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not found. in Appendix B). The button began in the center of the display and returned 

to the center position on every other trial. When the button was not in the center it 

appeared randomly in one of the 12 positions used in the main experimental task. The 

button appeared five times in each of these 12 positions. 

To introduce participants to the flow of the main experimental task, but not the 

specific stimuli used, participants next completed a training task. This training task was 

identical to the main experimental task, except that the colored rectangle with white x's 

was replaced by a 6 cm gray-patterned square with a 3 cm diameter white circle, and 

instead of 12 buttons arranged in a circle, there were four buttons (one for each of the 

four possible gray-patterns) arranged in a column to the right of the square (Error! 

Reference source not found. in Appendix B). Participants performed the task three 

times for each of the four patterns, and were provided guidance only if necessary. 

After the training, participants completed the main experimental task under one 

of the seven conditions for 30 blocks of 18 trials, for a total of 540 trials. They were 

given three one-minute breaks, one each at the end of blocks 5, 15 and 25. 

To determine the precision of the participant’s knowledge of the button locations 

at the end of the experiment, participants were presented with a colored rectangle in the 

center of an otherwise blank screen and instructed to move the cursor, which dragged 

with it a square the same size as the buttons, to the location of the correct button (i.e., 

the button associated with the current rectangle color) and click to drop the square 

(Error! Reference source not found. in Appendix B). Once the square was dropped, 

two buttons appeared at the bottom of the screen; one button allowed participants to 

repeat the square placement if they were not satisfied with the current one, and the 
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other would advance to the next trial. Squares dropped by participants were erased 

when either of the two buttons were pressed. Participants completed this task for all 12 

buttons. 

To determine the extent to which the participants in the arbitrary group learned 

the association between the icons and the colors, participants in this group were shown 

a button with an iconic label and were required to answer two questions: (1) Was this 

icon used in this study? and (2) If so, which color was associated with it? Each of these 

questions was answered via selection from pop-up menus such that the menu for 

question 2 was disabled unless the answer to question 1 was affirmative (Error! 

Reference source not found. in Appendix B). There were 24 trials, including 12 with 

the icons used in the experiment and 12 foils. Question one required recognition of the 

icon, and question two required retrieval of the color associated with it. 

Analyses/Predictions  

As mentioned above, the primary means by which location knowledge is 

evaluated is via unexpectedly removing the button labels, thus forcing participants to 

rely on their knowledge of button locations. The level of disruption in participants' 

performance assumed to be inversely related to their level of location knowledge. As 

indicated in the hypotheses, the predictions rely on the assumption that the more 

representative the labels, the poorer the location knowledge. Table 3 summarizes the 

performance disruption predictions for Experiment I.  

 

Table 3. Predicted levels of disruption for assessment time and label conditions when compared 
with baseline performance, disruption levels for other label groups, and disruption levels for early 
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versus late assessment times. 

Assessment 
Time 

Label Type vs. 
Baseline 

vs. Color-
Match 

vs. 
Meaningful 

vs. 
Early 

 Color-Match >    

Early Meaningful > <   

 Arbitrary = < <  

 Color-Match >    < 

Late Meaningful = <   < 

 Arbitrary = < = = 
 

In terms of the search cost hypothesis, participants in the color-match condition 

are expected to show not only significant performance disruption as compared to 

baseline, but also significantly more disruption than both the meaningful and the 

arbitrary groups, at both the early and late assessment times (Table 3, columns 3 and 

4). Participants in the color-match condition are expected to rely on the pop-out effect 

in the search phase instead of a more time-consuming controlled search, and thus learn 

location at a slower rate. The color-match condition is expected to learn locations over 

trials, however, so the level of disruption is expected to be smaller at the late 

assessment time than at the early time (Table 3, column 6). 

Participants in the meaningful group are expected to conduct a controlled search 

during the search phase but to rely on a display-based, label recognition strategy during 

the evaluation phase. As such, they are expected to show significant levels of disruption 

at the early assessment time, but not at the late time (Table 3, column 3). As compared 

to the arbitrary group, who are expected to learn locations from very early on, the 

meaningful group should show more disruption in the early phase, but an equivalent and 

non-significant level of disruption at the late assessment time (Table 3, column 5).  



 

35 

RESULTS - EXPERIMENT I 

Performance Curves 

To evaluate the assumptions about the cost differences between label groups, an 

analysis was performed on the nature of improvement in each of the label conditions. For 

several reasons, the analysis was restricted to blocks 1-10 for the no-label and late 

groups. First, trial times for blocks 1-30 (see Figure 3), suggested that all seven groups 

had not reached equivalence by block 5, the pre-assessment block for the early groups, 

necessitating an analysis that looked at performance beyond this point. Second, given 

the increases in trial time due to the removal of the labels in block 5 for the early 

assessment group, it would be inappropriate to perform trend analyses including trial 

times from blocks 6-10 for these early groups. Third, it appears from Figure 3 that 

within each of the label groups the early and late conditions show identical performance 

through block 5. This was confirmed via a 3 (Label) x 2 (Assessment Time) repeated 

measures ANOVA run on trial time for blocks 1-5 for all groups, which revealed a non-

significant main effect of assessment time, F(2, 54) < 1, ns. (The probability of a Type I 

error was set at .05 for all analyses reported in this paper.) Thus, the analyses described 

below may be considered representative of all participants within a given label condition. 

A 4 (Label) x 10 (Blocks) repeated measures ANOVA run on trial time for blocks 

1-10 for the late and no-label groups yielded significant main effects of label, F(3,36) = 

17.24, p < .05 and blocks, F(9, 324) = 120.95, p < .05, both of which were superceded 
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by a significant Label x Blocks interaction, F(27, 324) = 24.28, p < .05. This interaction 

was investigated in more depth via an analysis of simple main effects. 

 

 

Figure 3. Trial times from Experiment I by label condition and blocks. Gray signposts denote 
assessment blocks. 

 

As can be seen in Figure 4, the color-match and meaningful text groups both 

started off quite fast and improved only slightly as compared to the other two groups, 

as indicated by relatively flat performance curves. Performance improvement for the 

color-match group showed no significant change over blocks, F(9, 324) < 1, ns, 

suggesting that participants in this group were indeed conducting a pre-attentive search 

for the buttons throughout the task. In contrast, the arbitrary, meaningful, and no-label 
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groups all showed significant improvement over the 10 blocks, Fs(9, 324) = 99.29, 

4.05, and 89.86, respectively, ps < .05. 

 

 

Figure 4. Trial times for the first 10 blocks for the late and no-label groups. Error bars represent 
standard error. 

 

The analysis of simple main effects revealed that label groups significantly differ 

up through block 6, after which these differences are no longer reliable F(3, 120) < 1, 

ns. Including only these first 6 blocks, comparisons were run between label groups within 

the Label x Blocks interaction. This analysis revealed that the interface cost differences 

designed into the label conditions for the most part appear in the trial times. The no-

label group took longer to reach asymptote than the arbitrary group, F(5, 180) = 4.83, 

p < .05, and the arbitrary group took longer than the meaningful text group F(5, 180) = 
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41.46, p < .05. The contrast between the meaningful text group and the color-match 

group was not significant, F(5, 180) < 1, ns.  

Figure 5 reveals that nature of the curves presented in Figure 4 are consistent 

with the power law of learning. This law, which maintains that the acquisition of 

knowledge and skill can be described by a power curve, essentially means that there are 

initial large gains in performance followed by a more gradual rate of improvement. As 

shown in Figure 5, power curves provide an excellent fit to each of the four groups, 

ranging from an r2 of .86 for the color-match group to .98 for the arbitrary group.  
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Figure 5. Power curve fits to the Experiment I trial times (in seconds). Data are from blocks 1-10 
for the late and no-label groups only. 

 

Performance Disruption 

One critical assumption underlying the experimental method was that trial time 

and errors would increase after the labels were removed, due to participants’ inability to 

recall correct button locations. Thus, significant disruptions in performance would be 

assumed to reflect poor location knowledge. As such, two disruption scores were 

calculated, one for accuracy and one for trial time.  
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Accuracy Disruption 

The experimental task was designed to minimize errors by imposing a relatively 

high error cost. As a result, accuracy was quite high overall at 98%. The accuracy 

disruption score was calculated by subtracting the mean accuracy of the last use of each 

of the 12 buttons in the pre-assessment block (block 5 for the early groups and 25 for 

the late groups) from the mean accuracy of the first use of each of the 12 buttons in 

assessment blocks (block 6 for the early groups and 26 for the late groups). Means and 

standard deviations are shown in Table 4.  

A 3 (Label) x 2 (Assessment Time) x 2 (Frequency) mixed ANOVA with label and 

assessment time as between-subjects factors and frequency as a within-subjects factor 

was run on accuracy disruption score. This analysis yielded a significant main effect of 

label F(2, 54) = 3.45, p < .05, and a significant three-way Frequency x Label x 

Assessment Time interaction F(2, 54) = 3.07, p = .05. 

Planned comparisons (see Table 3) of the label main effect revealed that the 

color-match group showed a significantly larger drop in accuracy than the meaningful 

and arbitrary groups (Fs(1,54) = 4.11 and 6.06, respectively, ps < .05), but that there 

was no difference between the meaningful and arbitrary groups, F(1, 54) < 1, ns. Thus, 

the controlled-search groups retained higher accuracy than the color-match group when 

the labels were removed. This was also borne out in individual t-tests run to assess 

whether or not the level of disruption was significantly different from 0. These t-tests, 

shown in Table 4, revealed that although all three label groups showed significant levels 

of disruption in early assessment, only the color-match group showed a significant 

accuracy drop in late assessment. Thus, the color-match group, even after completing 
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450 trials, had less accurate knowledge of button locations than either the color-match 

or the arbitrary group.  

 

Table 4. Means (standard deviations) and t-test for difference from zero for accuracy disruption 
score (in proportion correct) by label and assessment time. 

 Early     Late   

Label M (SD) t p  M (SD) t p 

Color-Match -0.10 (0.16) -2.03* 0.04  -0.09 (0.11) -2.54* 0.02 

Meaningful -0.07 (0.08) -2.75* 0.01  -0.01 (0.03) -1.00 0.17 

Arbitrary -0.04 (0.07) -1.86* 0.05  -0.01 (0.03) -1.00 0.17 

*p<.05, df=9, one-tailed 

 

The three-way Frequency x Label x Assessment Time interaction is due to the 

meaningful early group differing in accuracy as a function of button frequency. The 

meaningful early group shows more accuracy disruption for the low (MLow = -0.13) than 

the high (MHigh = 0.00) frequency buttons. There is no particular theoretical 

interpretation for this; it is taken as random variation in the data. 

Overall, accuracy was high for all groups at 98% correct. All three label groups 

showed significant drops in accuracy in the early condition, but only the color-match 

group showed a significant drop in the late condition. Comparisons between the label 

groups revealed that the color-match group showed more disruption than the arbitrary 

or meaningful groups, but no difference between the meaningful and arbitrary groups. 

Thus, participants in the lowest interface cost (color-match) condition showed the most 

disruption. 
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Time Disruption 

A time disruption score was calculated for each button for each participant. 

Calculating the score involved subtracting the trial time for the last correct use of each 

button in the pre-assessment block from the trial time for the first correct use of that 

button in the assessment block. Means and standard deviations are reported in Table 5. 

 

Table 5. Means (standard deviations) and t-test for difference from zero for time disruption score 
(in seconds) by label and assessment time. 

 Early     Late   

Label M (SD) t p  M (SD) t p 

Color-Match 2.97 (1.39) 6.75* 0.01  1.15 (1.47) 2.47* 0.02 

Meaningful 1.14 (1.17) 3.08* 0.01  0.05 (0.42) 0.35 0.36 

Arbitrary -0.03 (0.83) -0.10 0.46  -0.20 (0.47) -1.32 0.11 

*p<.05, df=9, one-tailed 

 

A 3 (Label) x 2 (Assessment Time) x 2 (Frequency) mixed ANOVA with label and 

assessment time as a between-subjects factor and frequency as within-subjects was run 

on time disruption score. This analysis yielded significant main effects of both label and 

assessment time Fs(2, 54) = 23.11 and 14.05, respectively, ps < .05, as well as 

significant Label x Assessment Time, F(2, 54) = 3.29, p < .05, and Frequency x 

Assessment Time, F(1, 54) = 4.53, p < .05, interactions.  

Planned comparisons within the Label x Assessment Time interaction (see Table 

3) revealed that the color-match-early group was significantly more disrupted than the 

meaningful-early group, F(1,54) = 15.87, p < .05, and the meaningful-early group was, 
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in turn, more disrupted than the arbitrary-early group, F(1,54) = 6.43, p < .05, thus 

supporting the hypotheses that higher search and evaluation costs increase the 

acquisition of location knowledge. Also supporting the hypothesis were individual t-tests 

which revealed that the color-match and meaningful early groups showed significant time 

disruption but that the arbitrary group did not (see Table 5). 

These relationships did not hold for the late assessment condition, however, in 

which there was a significant difference between the color-match-late and meaningful-

late groups, F(1,54) = 5.72, p < .05, but no difference between the meaningful-late and 

arbitrary-late, F(1,54) < 1, ns. Unlike the other two groups, the color-match-late group 

was still showing significant performance disruption in late assessment (see Table 5). 

Thus, in contrast to the color-match condition, the controlled search groups had learned 

most or all of the button locations by 25 blocks into the experiment. 

Investigation of the Frequency x Assessment Time interaction indicated that the 

level of disruption on high versus low frequency buttons was greater at late assessment 

than early assessment. Thus, the less experienced early assessment participants were 

equally unfamiliar with the locations of the high and low frequency buttons as compared 

to the more experienced participants in the late condition, who were disproportionately 

more familiar with the high frequency buttons, and thus recovered more gracefully with 

these buttons. 

Response Categories 

Central to the hypotheses being tested is the level of participants' location 

knowledge at various points in the study. In order to precisely explore knowledge of 
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location, an encoding scheme was applied to the assessment block for the label groups 

and the corresponding blocks (6 and 26) for the no-label group (to enable comparison of 

this control group to the others). For these blocks, the first use of each of the buttons 

was encoded into one of four mutually exclusive and exhaustive categories. Trials were 

encoded as Direct if the participant clicked on the correct button without accessing any 

tips, Verify if the participant accessed a tip on only the correct button and then clicked, 

Search if the participant accessed tips on more than one button but eventually clicked 

the correct one, and Miss if the participant clicked the wrong button. The distributions of 

categories within label condition are presented in Figure 6. 

Based on these categories, a Location Knowledge Score (LKS) was calculated as 

the percent of directs and verifies. The assumption behind including verifies was that in 

these trials participants knew the location of the correct button, but could not evaluate 

the button without accessing a ToolTip. Thus, LKS may be considered a sensitive and 

somewhat liberal measure of location knowledge. A 3 (Label) x 2 (Assessment Time) x 2 

(Frequency) mixed ANOVA with label and assessment time as between-subjects factors 

and frequency as within-subjects was run on LKS. This analysis yielded significant main 

effects of label, F(3,72) = 13.74, p < .05, and assessment time, F(1,72) = 30.08, p < 

.05, but no significant Label x Assessment Time interaction, F(3,72) < 1, ns. 

The significant main effect of assessment time indicates that locations were 

indeed learned with experience. Not surprisingly, the groups overall knew a significantly 

larger percentage of locations after 26 blocks of trials than they did after only 6 blocks 

(Mearly = 74.8, Mlate =92.9). 
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Figure 6. Distribution of response categories for post-assessment trials collapsed over early and 
late assessment times. 

 

Comparisons within the label main effect revealed that the color-match group 

performed worse than the combination of the three controlled search groups, (Mcolor-match 

= 65.9, MOthers = 89.9, F(1,72) = 39.64, p < .05), but that no differences existed 

between these three groups (Mmeaningful = 87.1, Marbitrary = 93.0, MNoLabel = 89.6), Fs(1,72) = 

1.56, .29 and .51, ns, thus providing support for the search cost hypothesis. The 

increased cost of searching the interface for the needed button resulted in the 
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controlled search groups learning more locations than the group not forced to incur this 

cost. 

LKS measures the reliance on location knowledge in the search phase, but does 

not directly measure the extent to which groups were relying on this knowledge in the 

evaluation phase of task performance. Under the assumption that verify trials imply a 

weak prior reliance on location knowledge in the evaluation phase, an analysis of the 

frequency of these trials was undertaken. This analysis revealed a large difference in the 

ratio of the number of Directs to Verifies between the arbitrary (22:1), and meaningful 

(8:1) groups, indicating that participants in the arbitrary condition were far less likely to 

rely on ToolTips prior to clicking a button. Indeed, when LKS was recalculated with 

Verifies excluded, the arbitrary and meaningful groups were found to be significantly 

different (Mmeaningful = 70.9, Marbitrary= 89.6), F(1,72) = 5.68, p < .05. This finding yields 

support for the evaluation cost hypothesis, which predicted that the meaningful group 

would rely less on location than the arbitrary group. 

Proximity Analysis 

The analysis above used the response categories to focus on the accuracy of the 

location knowledge; this analysis focused on the precision of that knowledge. For search 

and miss trials, the distance (in buttons) was calculated between the correct button and 

the first button for which a tip was accessed in a search trial or incorrectly clicked in a 

miss trial (see Figure 1). This analysis revealed a disproportionate number of trials in 

which participants accessed a tip or incorrectly clicked a button that was adjacent to the 
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correct button, suggesting that participants often knew the approximate locations of 

the correct button. 

To explore this further, an attempt was made to filter out trials in which 

participants accessed a tip on an adjacent button by chance. As such, a trial was 

considered indicative of approximate location knowledge (an approximate-trial) only if it 

met one of two criteria: (1) it was a miss trial or (2) it was a search trial which met the 

additional constraint that two or fewer tips had been accessed over the course of the 

trial. This second constraint excluded trials in which the participant first accessed a tip 

on an adjacent button but then accessed tips on several other buttons before eventually 

locating the correct one. If the participant knew the approximate location, then there 

would only be a tip on the adjacent button, then either a tip access or a click on the 

correct one, for a total of two or fewer tips. 
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Figure 7. Distribution of errors and incorrect first guesses for post-assessment trials. The distance 
metric is the distance in number of buttons from the error or first guess trial to the correct button 
(see Figure 8). Approximate-trials are distinct from the reported 1s in that to be counted as an 
approximate-trial, the participant had to either make an error on an adjacent button or click the 
correct button directly after accessing a ToolTip on an adjacent button. Thus, 1s include trials in 
which more than two ToolTips were accessed; the implicit assumption being that the participant 
attended to an adjacent button merely due to chance. 

As can be seen in Figure 7, which shows the distribution of distances collapsed 

over all groups, there is a disproportionate number of approximate-trials. In 55.5% of the 

assessment trials, when participants did not know the exact location of the needed 

button, they appeared to know its approximate location (plus or minus one button). 

Table 6 shows the mean and standard deviations of percent approximate-trials broken 

down by type of label and assessment time. The cell size within groups is too 

disproportionate and small to enable an appropriate statistical analysis (e.g., the 
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arbitrary-late group has an n of 1), but both within and between levels of the 

assessment time manipulation, the groups show a similar proportion of approximate-

trials, suggesting that this phenomenon may be global and pervasive. 

 

 

Figure 8. Example calculation of distance metric used in proximity analysis. Distance values 
ranged from 0 to 6 and are in units of buttons. 

 

 

Table 6. Means and standard deviations for proportion of approximate-trials by label and 
assessment time 

 Early   Late  

Label M SD  M SD 
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Color-Match 0.40 0.50  0.64 0.46 

Meaningful 0.65 0.45  0.80 0.55 

Arbitrary 0.56 0.51  1.00  

No-Label 0.64 0.51  0.67 0.58 

 

Icon Memory Test 

Participants in the arbitrary condition were given a series of tests at the end of 

the study to determine the extent to which they learned the association between the 

icons and the colors (Error! Reference source not found. in Appendix B). The icon 

recognition test required participants to identify the icons used in the experiment among 

a series of foils. Results showed recognition was equally high for both early and late 

groups, with means of 94% and 93% correct respectively, F(1, 18) <1, ns. 

The results of the association test, which required identifying the color 

associated with a particular icon, are very similar to the pattern of results of the 

recognition test except that performance was not as high. The difference between the 

early and late groups was not significant (Mlate = 88%, Mearly = 73%), F(1, 18) = 2.20, ns.  

The lack of differences between groups is quite surprising given that the late 

group used buttons with the icons on them for 5 times as many blocks as the early 

group. What is especially surprising, is the relatively high score for the early group on the 

association test (73%), given that these participants had only seen the icons for 90 

trials, and had not seen them for the last 450 trials. It is possible that participants in the 

early group had, at least to some extent, learned the association between the icons and 
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colors early and continued to rely on this knowledge even after the labels were no longer 

displayed on the buttons. Implied in the only marginally better performance of the late 

group is that this group was relying on knowledge of the color-icon associations about as 

much as the early group, who no longer had the icons visually available.  

Location Memory Test 

In the location memory test, participants were shown a colored rectangle and 

instructed to place a button-sized square as precisely as possible in the location of the 

button associated with the current color (see Error! Reference source not found. in 

Appendix B). The performance measure for this test was the mean absolute euclidean 

distance in pixels from the center of each square placement to its respective correct 

center location. The means and standard deviations are presented in Table 7. 

 

Table 7. Means, standard deviations and sample sizes for accuracy scores on 1ocation memory 
test. The scores are the average euclidean distance in pixels from the guessed locations to their 
correct respective button location. 

Label Condition M SD n 

Color-Match-Early 25.01 4.48 10 

Color-Match-Late 37.83 16.40 9 

Meaningful-Early 30.29 9.01 10 

Meaningful-Late 32.35 11.19 10 

Arbitrary-Early 25.63 9.54 10 

Arbitrary-Late 26.47 9.94 10 

No-Label 29.56 12.69 9 
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Overall 29.59   

 

Data from two participants were excluded from these analyses as it was apparent 

from a visual inspection of the pattern of their square placement that instructions for 

completing the task were not followed (e.g., buttons were placed in the center rectangle 

or over the control buttons in the lower right hand corner of the screen). One participant 

was from the color-match-late group and the other was from the no-label group. 

The scores were subjected to a one-way ANOVA with group as the between-

subjects factor, which revealed no significant differences between the groups, F(6, 61) 

= 1.63, ns. Thus, by the end of the experiment all groups had apparently learned the 

button locations to an equivalent extent. It is interesting to note that the overall mean 

score for the groups was 29.6 pixels, which, given that each of the buttons used in the 

experiment was 32 pixels square, means that, on average, participants were able to 

place buttons in locations that overlapped the 32 pixel boundary surrounding the center 

of their correct locations. This shows that location memory, on average, was quite 

accurate. 
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DISCUSSION - EXPERIMENT I 

The performance curve analysis (see Figure 4) demonstrated that the groups in 

the four label conditions performed in a manner consistent with the anticipated search 

and evaluation costs outlined in Table 1. The curve for the lowest cost, color-match, 

condition (low search and very low evaluation cost) was quite flat as compared to the 

other conditions. Indeed, the analyses revealed that this group, unlike any other group, 

showed no significant improvement. The meaningful text group, designed to have the 

second-lowest cost overall (high search and low evaluation cost), did show significant 

improvement over blocks, but still showed a relatively flat performance curve as 

compared to the arbitrary and no-label conditions. The meaningful group started off 

almost three times faster than the arbitrary and no-label groups, which both showed 

large and significant improvement in performance over trials. The arbitrary and no-label 

groups did not show identical improvements in performance, however, supporting the 

distinction between the second-highest cost, arbitrary (high search and moderate 

evaluation cost) condition and the highest cost, no-label (high search and high evaluation 

cost) condition.  

Location Learning 

Consistent with the research discussed in the literature review, the results of 

Experiment I provided ample evidence that all groups learned button locations. The time 

disruption analysis revealed that participants showed a significantly larger disruption in 
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performance in the early assessment condition than in the late assessment condition, 

indicating that participants in the late groups had more accurate location knowledge. 

Similarly, the analysis of location knowledge score revealed that participants overall knew 

a significantly larger percentage of locations in the late assessment condition than in the 

early assessment condition.  

The results of the location memory test analysis also provide strong evidence for 

location learning. By the end of the experiment, participants were able to reconstruct 

the original locations of the buttons with a high degree of accuracy, on average 

overlapping the correct location with their placement.  

The proximity analysis suggests that location learning is not an all-or-none 

endeavor. The disproportionate number of first-guesses and errors involving buttons 

directly adjacent to the correct button (i.e., approximate-trials) suggests that 

participants could often recall the approximate location of buttons when they couldn't 

recall the precise location. Thus, it may be the case that locations are learned in 

increasing levels of precision, such that as learning proceeds the precision increases. 

Finally, because learning locations was the only alternative the no-label group had 

for improving performance, the performance curve for this group represents a pure 

curve for location learning in this paradigm (see Figure 4). Asymptote was not reached 

for this group until after 8 blocks (144 trials), indicating that acquiring the ability to 

reliably retrieve locations, like other chunks of information (e.g., a phone number), 

requires effort and practice. The nature of improvement in trial times for this group was 

well fit by a power curve (r= .96, see Figure 5d), further suggesting that location 

learning relies on the same learning mechanisms underlying other types of learning.  
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Search Cost 

The results provide ample support for the Search Cost Hypothesis, which 

asserted that locations would be learned faster and more reliably in interfaces requiring a 

controlled search of the screen than in interfaces without such a requirement. The 

relevant group comparisons for evaluating this hypothesis are between the color-match 

group and all other groups. Support comes from the time disruption analysis, accuracy 

disruption analysis, and the location knowledge score analysis, all of which demonstrated 

that this group had weaker location knowledge than any of the other conditions.  

In both the time and accuracy disruption analyses, the color-match group showed 

significant decreases in performance, made significantly more errors and took 

significantly longer to complete trials than the other groups. In the time analysis, the 

color-match-late group, unlike the other late groups, still showed significant disruption, 

indicating that participants in this group did not have accurate knowledge of all button 

locations even after 450 trials.  

As compared to the meaningful and arbitrary groups, the color match group 

consistently performed more poorly on measures of location knowledge. The level of 

time and accuracy performance disruption was shown to be significantly higher than any 

of the other groups. With early and late location knowledge scores combined, the color-

match groups had a score of 67%, significantly worse than either of the other label 

conditions (arbitrary = 94% and meaningful = 80%). 
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Evaluation Cost 

The results also support the Evaluation Cost Hypothesis, which stated that users 

would rely more upon location in an interface with a high evaluation cost than in an 

interface with a low evaluation cost. Note that reliance upon location information 

requires that locations are not only known, but known to a degree that location acts as a 

sufficient cue to determine whether a given button is the correct one.  

As indicated by Table 1, the anticipated search cost for the meaningful, arbitrary 

and no-label groups is constant, but the evaluation costs differ. As such, evaluating this 

hypothesis requires comparisons of the performance of these three groups in terms of 

the extent to which they learned and relied on location knowledge. 

In terms of disruption, the meaningful group showed significantly more time 

disruption in performance than the arbitrary group, although there was no difference in 

accuracy disruption. The analysis of the location knowledge score (LKS), which included 

both verifies (trials in which participants accessed a ToolTip on the correct button prior 

to clicking it) and directs (trials where participants clicked the correct button without 

accessing a tip), revealed no differences between the meaningful, arbitrary and no-label 

groups. A more detailed analysis, which separated verifies from directs, revealed a 

significant difference between the meaningful and arbitrary groups in the number of 

verify trials. This analysis revealed that the meaningful text group was almost 3 times 

more likely to access a ToolTip on the correct button prior to clicking it, suggesting that 

this group was relying heavily on the label prior to the assessment block and less so on 

location knowledge. The arbitrary label group, which apparently had acquired the ability 
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to evaluate buttons based on location, was able to successfully evaluate whether the 

button was correct without resorting to a ToolTip.  

Label vs. Location Learning 

Although there is ample evidence that participants in the arbitrary condition 

learned and relied on button locations, the icon memory test showed that these groups 

also knew most of the icon-color associations by the end of the experiment. Clearly, the 

interaction between knowledge and skill in using an interface is just not a matter of 

learning and relying on location only or label only. 

The learning curve analysis revealed a distinct advantage in the rate of location 

learning between the arbitrary and no-label groups, such that the arbitrary groups 

improved performance much more quickly than the no-label group. The most likely 

source of this advantage is that the icons, although not inherently meaningful, facilitated 

performance by enabling participants to distinguish the buttons from each other. Thus, 

participants in the arbitrary icon group, like the meaningful text and color-match groups, 

could eventually rely on the labels to evaluate whether or not the currently attended 

button was the correct one. The no-label group would have to access a ToolTip to 

perform such an evaluation. 

Thus, it seems clear that the arbitrary group was relying both on label and 

location. What is not clear, however, is what was learned or relied on first. It is plausible 

that participants focused on the locations first and learned the labels as they completed 

trials (it would be difficult to ignore the labels completely). Alternatively, participants 

may have focused on the icon-color association first and then conducted a search similar 
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to one they would have conducted in the meaningful text condition (evaluate button 

labels until they find the one they are looking for, e.g., the book icon). The data 

collected in this experiment cannot resolve this issue.  

The Need for Experiment II 

Although Experiment I provided strong evidence in support of the hypotheses, 

there were several reasons for undertaking a second experiment. First, although careful 

control over experimental conditions allowed inferences to be drawn based on 

performance measures, the search cost hypothesis could be evaluated more directly 

using data derived from finer grained behavioral measures, such as point of gaze. Data 

on where participants were looking over the course of using the interface could provide 

additional evidence on whether or not participants are learning locations as well as 

insight on the process and rate of this learning (e.g., if participants make direct eye 

movements to the correct button instead of attending to multiple buttons, this is clear 

evidence that the location of that object has been learned).  

Second, interesting questions emerged from Experiment I that could best be 

addressed with point of gaze data. The finding that there were a disproportionate 

number of approximate-trials suggested that approximate locations may be learned 

before the precise location. These data, however were based on accesses to ToolTips 

and errors and thus incorporated too few trials to enable an appropriate analysis. 

Further, these trials were taken only from assessment blocks, and thus may not have 

been reflective of more typical use. With point of gaze data, more accurate and 



59 

representative counts of approximate-trials over all trials and groups could be obtained 

in order to further investigate this phenomenon. 

Third, data from the eye tracker could also be used to precisely extract search 

cost and evaluation cost from trial times, thus enabling quantifiable evaluation of the 

extent to which the four label conditions differ in the intended manner (i.e., did the 

intended pattern of search and evaluation costs emerge?). Recall that search cost is 

operationalized as the number of buttons that must be searched before the correct one 

is found, and evaluation cost is the amount of time required to determine if the currently 

attended button is the one currently needed. Both of these measures could be 

calculated from point-of-gaze data. 

Finally, measures derived from eye-tracking data could be used to constrain the 

computational cognitive model built in the second, analytical, phase of this research. 

Instead of just fitting the model to trial time data, the model could be constrained to 

correspond to measures more indicative of location learning, such as number of buttons 

evaluated per trial.  
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METHODS - EXPERIMENT II 

Experiment I provided strong evidence in support of the hypotheses, but the 

experimental method confined examination of location knowledge to specific snapshots 

of users’ experience, i.e., the assessment blocks and the end of the experiment. To 

acquire more continuous, finer-grained measures of location learning, point of gaze data 

were collected in Experiment II.  

Participants 

Sixteen George Mason University undergraduates participated in the study for 

course credit. There was an equal number of participants in each of the four groups. 

Materials 

The layout of the experimental room was identical to Experiment I except for the 

inclusion of an Applied Science Laboratories model 504 eye tracker. This eye tracking 

system used a pan/tilt optics system in which the camera responsible for capturing the 

eye image sits facing the participant, as opposed to being mounted on headgear. Pupil 

diameter and point of gaze data accurate to 1 degree of visual angle were collected by 

the system and written to disk every 16 milliseconds.  

The main experimental task was identical to the one used in Experiment I. At a 

viewing distance of 24 inches, each button subtended 1.4 degrees of visual angle and 

was separated from adjacent buttons by 3 degrees. The distance from the center 

rectangle to each of the buttons was 7.25 degrees. Given the 1 degree of accuracy of 
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the eye tracking system, this was designed to enable accurate identification of the 

current object of attention.  

Procedure 

The experimental procedure was a scaled-down version of Experiment I, excluding 

all but the color training, practice, main experimental task, and location memory test 

(see Appendix C for a schematic representation of the experimental procedure and full 

text of the protocol). Participants were led through a calibration procedure for the eye 

tracker, color training task, and practice tasks; they then performed the main 

experimental task for 16 blocks of 12 trials each, for a total of 192 trials (35% of the 

number of trials completed in Experiment I). The experiment contained only one 

between-subjects factor, label, which had the same four levels as in Experiment I (color-

match, meaningful, arbitrary and no-label). 

Dependent Measures 

Although the performance measures used in Experiment I were also collected for 

this study, the primary measures of interest were derived from the eye-tracking data: 

the distance between the first-attended button and the correct button, the average 

button evaluation time per button per trial (corresponding to evaluation cost), and the 

number of buttons evaluated per trial (corresponding to search cost). The number of 

buttons evaluated per trial is also the primary measure of location learning in that it is 

assumed that as button locations are learned, the number of buttons evaluated per trial 

decreases. An additional measure derived from the eye data was the amount of time 



62 

spent attending to the colored rectangle at the beginning of a trial. The assumption 

underlying this measure is that participants are using this time to retrieve information 

about the currently needed button from memory (i.e., label, location). To the extent that 

participants were spending more time attempting retrieval, this is taken as a measure of 

the effort expended to avoid an extensive visual search of the screen.  

The calculation of these measures required several key assumptions and a fair 

amount of post-processing. The first step involved segmenting and removing bad data 

from the eye-tracker output. The data were segmented into trials, where a trial is 

bounded by the point at which the colored-rectangle was initially presented and when 

the user clicked the correct button (error trials were excluded). Within a given trial, a 

data point was excluded if its reported pupil diameter was 0 (indicating a loss of data, 

typically a blink), or if either its reported x or y coordinate were 0 (again, indicating bad 

data).  

The x and y coordinate units were then translated into pixels and plotted. With 

data from all trials for a given participant plotted simultaneously, it was possible to 

visually identify clusters of points for the colored rectangle and each of the 12 buttons 

(as well as their associated ToolTip rectangles). Cluster centroids were identified by 

centering the clusters over the mean of the distribution of points with the smallest 

standard deviation (see Figure 9). A zone was then constructed around each of these 

centroids. For the buttons, the zones were squares with sides of a length equivalent to 

2.5 degrees of visual angle and for the center rectangle, the zone was a rectangle with a 

width of 5 degrees and a height of 2.5 degrees. The zone sizes were chosen based upon 

several constraints: (1) incorporating the 1 degree of error of the eye-tracking system, 
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and (2) minimizing the overlap between zones while maximizing the number of points 

assigned within zones.  

A critical assumption in calculating the number of buttons evaluated per trial is 

the lower bound on the time required to evaluate whether or not a button is the one 

currently needed. A minimum in-zone time of 200 milliseconds was selected. This 

minimum is set primarily to filter out extraneous points passing through a zone (such as 

sometimes occurred after a blink) but to otherwise be inclusive. Once the zones and 

minimum criteria were defined, the number of buttons evaluated per trial was calculated 

as the sum of the visits to button zones. Multiple visits to the same button were 

counted only if the participant left the button’s zone for longer than one second.  
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Figure 9. Example plot of eye data and analysis zones (rectangles surrounding buttons and 
rectangle in center) from a participant in the no-label condition. The filled circles represent 
sustained point of gaze such that the longer the gaze the larger the circle. The line represents the 
scan path and gets lighter as time passes through the trial. 

 

Average evaluation time was calculated as the total time taken to complete the 

trial minus time spent in the center rectangle zone divided by the total number of button 

visits during the trial. The reason that this measure was used instead of simply summing 

the time spent in buttons zones and dividing by button visits stems from an inadvertent 

eye-tracking system setting that resulted in the reported eye position (i.e., x and y 

coordinates) being averaged over 500 milliseconds. Thus, a given x-y coordinate 

reported by the eye-tracker was a running average of the x-y coordinates over the 
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previous 500 ms. Because this averaging occurred across all conditions, the relative 

differences between groups, which constitute the basis for evaluating the hypotheses, 

are believed to remain unaffected. This issue is discussed further in Appendix D.  
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RESULTS - EXPERIMENT II 

Performance Curves 

As would be expected, a comparison between Figure 10, which plots trial time 

over blocks by label condition for Experiment II, and Figure 4, which plots the equivalent 

values for Experiment I, indicates a similar pattern of results. A 4 (Label) x 16 (Blocks) 

repeated measures ANOVA run on trial time yielded significant main effects of label, 

F(3,12) = 9.11, p < .05 and blocks, F(15, 180) = 55.25, p < .05, as well as a significant 

Label x Blocks interaction, F(45, 180) = 12.91, p < .05. The interaction was 

investigated in more depth via an analysis of simple main effects. 

In terms of the level of performance improvement over blocks, the analysis 

revealed that whereas the arbitrary and no-label groups showed significant improvement 

over blocks, Fs(15, 180) = 40.87 and 51.38, respectively, ps < .05, the color-match 

and meaningful groups did not, Fs(15, 180) < 1 and = 1.60, respectively, ns. This 

pattern of results differs slightly from the Experiment I analysis in that the meaningful 

groups showed significant improvement in Experiment I but not in Experiment II. The 

difference is largely due to the number of blocks over which the analysis was run; this 

analysis includes 16 blocks of trials (192 trials) whereas the Experiment I analysis was 

only over 10 blocks (180 trials), such that stable performance over later blocks washed 

out the improvement in the earlier blocks.  

The simple main effects analysis revealed no statistically reliable differences in 

trial time between the four groups after block 10, F (3, 192) < 1, ns. The pattern of 
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results of planned between-group contrasts run within the Label x Block interaction using 

these first 10 blocks is identical to that found in Experiment I. The no-label group took 

longer to improve than the arbitrary group, F(9, 108) = 2.03, p < .05, and the arbitrary 

group took longer than the meaningful text group F(9, 108) = 17.03, p < .05. The 

contrast between the meaningful text group and the color-match group was not 

significant, F(9, 108) < 1, ns, indicating that these two groups improved at roughly the 

same rate.  

 

 

Figure 10. Trial times (in seconds) over blocks by label condition for Experiment II. Error bars 
indicate standard error. 
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Although the absence of the frequency manipulation in Experiment II obscures 

direct comparison with the times from Experiment I, the pattern of results is very similar, 

indicating that the effects are robust even with a significantly reduced sample size. 

Average Button Evaluation Time 

As indicated in Table 1, the label conditions were designed to vary evaluation 

cost, i.e., the time and effort required to determine if the currently attended button is 

the one currently needed. To evaluate the effectiveness of this manipulation, a 4 (Label) 

x 16 (Blocks) repeated measures ANOVA was run on average evaluation time. This 

analysis yielded significant main effects of label, F(3,12) = 10.61, p < .05, and Blocks, 

F(15, 180) = 22.90, p < .05, both of which were superceded by a significant Label x 

Blocks interaction, F(45, 180) = 9.35, p < .05, shown in Figure 11.  

As can be seen in this figure, the color-match and meaningful groups show 

similar, stable performance over blocks. A comparison of the means for these groups 

over blocks reveals no difference F(15, 180) < 1, ns. Thus, the time to evaluate the text 

label is equivalent to the time needed to match the rectangle color with the labels in the 

color-match condition. Indeed, the meaningful text group appears to be faster at block 

one, though this difference is not significant, Mmeaningful = 0.61, Mcolor-match = 0.97, t(1)= 

2.65, p < .05. The value for the color-match group is most likely larger than the 

meaningful condition due to mouse movement time, which is implicitly included in 

calculation of the average button evaluation time. In trials where only one or two 

buttons are attended, such as in the case of the color-match group and the other 

groups in later blocks, the time to get the mouse to the button becomes the lower 
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bound for average evaluation time. Data from the mouse movement test provides a time 

estimate of 720 milliseconds. The mean times over all blocks for the color-match and 

meaningful groups are very close to this bound, Mcolor-match = 770 ms and Mmeaningful = 728 

ms. 

 

 

Figure 11. Average evaluation time per button (in seconds) by block and label. Error bars indicate 
standard error. 

 

The no-label group spent more time evaluating buttons than the arbitrary group, 

F(15, 180) = 3.49, p < .05, and the arbitrary group, in turn, spent more time than the 

meaningful group, F(15, 180) = 16.78, p < .05. As can be seen in Figure 11, the no-

label group shows slow, gradual improvement as compared to the arbitrary group. The 
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arbitrary group reaches the same level as the meaningful and color-match groups by 

block 7. The difference between the arbitrary and no-label groups, attributable to the 

no-label group’s sustained reliance on ToolTips (see Figure 12), again demonstrates the 

usefulness of even meaningless labels. Even this weak visual cue can serve to enhance 

participant’s recall of the color associated with the button, and thus enable evaluation of 

the button without necessitating a ToolTip.  

Rectangle Study Time 

The amount of time spent looking at the colored rectangle at the beginning of a 

trial was also calculated and analyzed. As can be seen in Figure 13, which plots rectangle 

study time by group over blocks, the differences between groups in time spent looking 

at the center are qualitatively similar to the differences the trial times plotted in Figure 

10. A 4 (Label) x 16 (Blocks) repeated measures ANOVA yielded a non-significant main 

effect of Label, F(3,12) = 2.50, ns, a significant main effect of Blocks, F(15, 180) = 

13.19, p < .05, and a significant Label x Blocks interaction, F(45, 180) = 2.71, p < .05. 

This interaction was investigated in more depth via contrasts and simple main effects. 

The analysis of simple main effects revealed that whereas the arbitrary, 

meaningful, and no-label groups showed significant improvement over blocks, Fs(15, 

180) = 7.49, 2.17 and 11.5, respectively, ps < .05, the color-match group did not, 

F(15, 180) < 1, ns. Thus, the three controlled search groups spent increasingly less time 

over blocks attending to the center rectangle, whereas the color-match group spent a 

relatively constant amount of time. To the extent that the time spent looking at the 

rectangle was being used by the participants to attempt retrieval of the label and 
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location of the currently needed button from memory (in lieu of conducting a visual 

search), the decrease in rectangle study time by the controlled search groups may 

reflect learning of the labels and/or locations. The underlying assumption here is that as 

participants acquired the ability to quickly retrieve the required information (i.e., the 

label or location of the currently needed button) they spent less time looking at the 

rectangle. The color-match group, to the extent that they were relying on the pre-

attentive search to locate the correct button, did not have to bother with such 

retrievals. 
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Figure 12. Mean number of ToolTips accessed per trial by block and label. Error bars depict 
standard error. 
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Contrasts between the groups within the Label x Block interaction revealed some 

differences in the rate of the decrease in study time. The meaningful group decreased 

study time faster than the no-label group, F(15, 180) = 2.90, p < .05, but not faster 

than the arbitrary group, F(15, 180) = 1.64, ns. There was no difference between the 

arbitrary and no-label groups, F(15, 180) < 1, ns, indicating that these two groups 

improved at roughly the same rate. 
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Figure 13. Mean time spent looking at the colored rectangle per trial by block and label. Error 
bars depict standard error. 
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Number of Buttons Evaluated 

Figure 14 shows the number of buttons evaluated per trial by block and 

condition. There are two primary features apparent in this graph. First, the arbitrary, 

meaningful and no-label groups appear to start off at the same point in block 1 (Marbitrary 

= 5.27, Mmeaningful = 4.94, Mno-label = 5.06), whereas the color-match group starts much 

lower, Mcolor-match = 1.57. The second feature is that the arbitrary, meaningful, and no-

label groups show a strong and similar curvilinear trend while the color-match group 

remains quite flat over blocks. The first of these features, the starting points of the 

groups, underlies the distinction between the pre-attentive search (low search cost) 

enabled by the color-match condition and controlled search (high search cost) required 

by the other three conditions. To determine the statistical reliability of this distinction, a 

one-way ANOVA was run with label as the independent variable and number of buttons 

evaluated for block 1 as the dependent variable. This analysis yielded a significant main 

effect of label, F(3, 12) = 7.60, p < .05, and thus allowed contrasts to be run. These 

contrasts revealed a significant difference between the pre-attentive (color-match) 

group and the three controlled search groups, Mcolor-match = 1.57, Mcontrolled-search = 5.09, F(1, 

12) = 22.43, p < .05, but no significant differences between any of the controlled 

search groups: arbitrary versus meaningful, arbitrary versus no-label or meaningful 

versus no-label, Fs(1,12) < 1, ns. This analysis supports the validity of the distinction 

and thus, the effectiveness of this manipulation. 

The second feature, the nature of the decrease in number of buttons evaluated 

over blocks, is taken as the primary measure of location learning. A 4 (Label) x 16 
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(Blocks) repeated measures ANOVA run on buttons-attended yielded a non-significant 

main effect of label, F(3,12) = 2.97, ns, a significant main effect of Blocks, F(15, 180) = 

38.17, p < .05, and a significant Label x Blocks interaction, F(45, 180) = 3.85, p < .05. 

This interaction was investigated in more depth via contrasts and simple main effects. 

The simple main effects revealed that only the color-match group failed to show 

a significant decrease in the number of buttons evaluated over blocks, F(15, 180) <1, 

ns. Planned contrasts conducted on the Label x Blocks interaction revealed no significant 

differences between any of the controlled search groups, Fs(15, 180) <1, ns. Thus, as 

measured by acquisition of the ability to accurately move attention to the correct 

button, the three controlled search groups learned locations at the same rate. The color-

match group, unlike the other groups, demonstrated the ability to find and move 

attention to the correct button from the very first block. 
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Figure 14. Mean number of buttons evaluated by block and label. Error bars depict standard error. 

 

A look at Figure 14 reveals that the lowest average number of buttons evaluated 

for any group is about 1.5. This value would be expected to be closer to one for all 

blocks in the color-match group and for later blocks in the other groups, once locations 

had been learned. This unanticipated result is explored further in the next section. 

Proximity Analysis 

In Experiment I, participants were shown to have a disproportionately high 

number of errors and tip-accesses on buttons directly adjacent to the correct button, 

called approximate-trials. The collection of eye-position data for Experiment II enabled 
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the exploration of this phenomenon at a much finer grain. For each trial, the distance 

from the first-attended button to correct button was calculated in the same manner as 

it was for Experiment I (see Figure 8). Approximate-trials were then identified as those in 

which: (1) the first-attended button was adjacent to the correct button and, (2) the 

correct button was the only other button attended and clicked. Figure 15 plots the 

percentage of approximate-trials beside values for other trials where the first-attended 

button was not the correct button. As can be seen in this figure, the frequency of 

approximate-trials, at 35.7%, is roughly three times higher than for other trials where 

participants did not look at the correct button first (i.e., button distance is not zero). 

 

0

5

10

15

20

25

30

35

40

1 2 3 4 5 6

Pe
rc

en
t 

Tr
ia

ls

Approximate 
Trials Number of Buttons Away From Correct Button  
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approximate-trial, the participant had to attend to only two buttons: the adjacent button, then the 
correct button. Thus, 1s include trials in which more than two buttons were attended; the implicit 
assumption being that the participant attended to an adjacent button merely due to chance. 

 

Although the percent of approximate-trials is lower than the 55.5% found in 

Experiment I, it is important to point out that the circumstances under which button 

distance was assessed is quite different. In Experiment I, these were only measured in 

the assessment blocks, so there were a maximum of 12 possible measurements per 

participant as compared to Experiment II, where button distance was assessed for each 

of the 192 trials. With measurements for each trial, it is possible to determine if there is 

a pattern of approximate-trials over blocks. 

Figure 16 plots the proportion of approximate-trials by block and label condition. 

The overall mean proportion of approximate-trials is 12%, or about 1.5 trials per block. It 

is difficult to discern much of a pattern from this figure, although it appears that the 

meaningful and no-label conditions show an initial increase in the proportion of 

approximate-trials, the color-match and arbitrary group appear to show a decrease. A 4 

(Label) x 16 (Blocks) repeated measures ANOVA yielded only a significant main effect of 

label, F(3,12) = 4.45, p < .05. Pairwise contrasts on the main effect revealed significant 

differences between the arbitrary (M = .09, SD = .10) and both the meaningful (M = .15, 

SD = .10) and the no-label groups (M = .13, SD = .08), and also between the color-

match group (M = .10, SD = .08) and the meaningful group, Fs(15, 180) = 11.11, 5.69, 

and 5.97, respectively, ps < .05.  

If there is something systematic about the relationship between the proportion of 

approximate-trials over blocks and location learning, it is not readily apparent from these 
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data. If participants are first learning the approximate location of the buttons and then 

subsequently honing their accuracy, the tail ends of the curves for the controlled search 

groups should become increasingly stable and close to zero. These curves, however, are 

noisy but overall relatively flat, and hovering at an average of about one approximate-

trial per block, suggesting that the approximate effect may instead stem from noise in 

eye movements or imprecise location memory.  
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Figure 16. Proportion of approximate-trials versus all trials by block and condition. Error bars 
represent standard error 
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Support for the noisy eye-movement explanation comes from the lack of 

difference between the color-match group and the combination of the controlled search 

groups (Mcolor-match = .10, Mcontrolled-search = .12), F (1, 12) = 1.55, ns. To the extent that the 

color-match group is using a pre-attentive search (i.e., not relying on memory), the 

approximate-trials for this group should be attributable to error in eye movement error 

rather than noise in location memory. To the extent that participants in this experiment 

are emphasizing speed over accuracy in making the saccade from the rectangle to the 

desired button, there is some support for this explanation in the eye movement 

literature. Several studies have demonstrated that saccade accuracy significantly 

increases when additional time is provided for planning the movement (Coeeffe & 

O'Regan, 1987; Viviani & Swensson, 1982). This speed/accuracy trade-off explanation 

relies on the assumption that the participants have accurate knowledge of where the 

saccade is to be directed. In the color-match group, the accuracy of the knowledge 

would be based on the automatic detection of the button. Because in the other label 

conditions, this would require retrieving the location from memory, the data should 

initially show chance levels of approximate-trials followed by an increase and eventually 

steadying over later blocks. Although, the Label x Block interaction was not significant, 

the controlled search groups do appear to show an increasing trend over the first 5 

blocks of trials.  

The data from Experiment I seem counter this explanation, however. Recall that 

the approximate counts from Experiment I were based on error trials and trials in which 

participants accessed ToolTips. If the effect was merely the result of error in eye 

movement, participants would likely not have clicked or waited for a tip. In addition, an 
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explanation based on the premise that the location knowledge is noisy or approximate 

could also explain these features in the data, at least for the controlled search groups. 

Thus, though it is not clear form this data, it is plausible that the approximate effect is 

the combined result of noise in location memory and eye movement.  

Location Memory Test 

Location memory was scored in terms of mean absolute distance in pixels from 

the correct location, as it was in Experiment I. Means and standard deviations are 

reported in Table 8. The overall mean error for Experiment II, at 54.02 pixels, is larger 

than the 29.59 pixels reported in Experiment I. This poorer performance is to be 

expected, given that participants in Experiment II: (1) were not forced to rely on location 

knowledge by having the button labels unexpectedly removed and (2) completed about 

one-third of the number of trials as their counterparts in Experiment I.  

 

Table 8. Means, and standard deviations for accuracy scores on 1ocation memory test. The scores 
are the average euclidean distance in pixels from the guessed locations to their correct respective 
button location (n = 4). 

Condition M SD 

Color-Match 99.29 29.49 

Meaningful 45.86 3.96 

Arbitrary 29.43 8.66 

No-Label 41.51 13.39 

Overall 54.02  
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A one-way ANOVA run on error score with group as the between-subjects factor 

yielded a significant effect of label, F(3, 12) = 13.47, p < .05. As can be seen in Table 8, 

the error for color-match group, at 99.29 pixels, is more than twice that of any other 

group, indicating that this group had less accurate location knowledge by the end of the 

experiment. Pairwise contrasts confirm that the score for the color match group was 

significantly worse than that of the arbitrary, meaningful and no-label groups, Fs(1, 12) 

= 34.28, 20.05 and 23.45, respectively. No other pairwise contrasts were significant, 

indicating that the arbitrary, meaningful and no-label groups had equally accurate 

location knowledge by the end of the experiment. 
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DISCUSSION - EXPERIMENT II  

The results of Experiment II verified that the search and evaluation cost 

manipulations had the intended effects. The effectiveness of the search cost 

manipulation (see Table 1), was demonstrated in a block one comparison between the 

controlled search groups, who on average attended to about five buttons per trial, and 

the color-match group, who only attended to about one button. Given the operational 

definition of search cost as the number of buttons which would have to be attended 

prior to locating the correct one, the search cost was indeed higher for the meaningful, 

arbitrary, and no-label groups than for the color-match group. 

In terms of the hypothesized effects of search cost on location knowledge (i.e., 

the search cost hypothesis), the results of the location memory test revealed that the 

high search cost groups had more accurate location knowledge than the low search cost 

group. Thus, in congruence with this hypothesis, the increased search cost imposed by 

the interface led to faster acquisition of location knowledge. 

The evaluation cost manipulation (see Table 1) was largely verified via the 

analysis of average button evaluation time. As intended by the manipulation, participants 

were shown to have spent more time evaluating each button in the no-label condition 

(high cost) than in the arbitrary (moderate cost) condition, and likewise more time on 

the arbitrary than the meaningful (low cost) condition. There was no difference between 

the color-match and the meaningful conditions, although the lack of a difference is likely 

attributable to the mouse movement time washing out whatever differences may have 
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existed between these groups. Alternatively, it is possible that it took participants no 

longer to evaluate a text label than a blotch of color. 

Finally, the approximate-trial phenomenon found in Experiment I and replicated in 

Experiment II was explored in more detail. Although the results failed to clearly identify 

the cause of this phenomenon, they did raise some interesting alternative explanations 

including the presence of a speed/accuracy trade-off in eye-movements and the 

retention of only approximate location knowledge for use in the search phase of the 

task. Future studies will have to try to tease these explanations apart.  
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CONCLUSIONS - EXPERIMENTS I & II 

The results from Experiments I and II demonstrate that location learning is 

pervasive. The participants in all groups learned the button locations to some degree. 

This finding is congruent with findings in the HCI, problem solving, and reading literatures 

described above, all of which demonstrated that people learn locations with practice. The 

results of the present research extended these findings by demonstrating that location 

learning is not only pervasive, but also subject to the cost structure of the interface. 

Consistent with the search cost hypothesis, as the cost of using the label to locate the 

currently needed button (i.e., search cost) increased, so did the rate of location learning 

and reliance on location knowledge. Consistent with the evaluation cost hypothesis, as 

the cost of using the label to evaluate whether a given button is the one that is 

currently needed (i.e., evaluation cost) increased, so did the reliance on location 

knowledge in the evaluation phase of task performance. Thus, support was found for 

both hypotheses. 

The results from both experiments indicate that users of direct manipulation 

interfaces will rely on location as a performance cue only to the extent that the interface 

provides them with no less-effortful alternative. Embedded in this hypothesis is the 

assumption that the user interacts with the interface in a rational manner, choosing the 

interaction strategy that incurs the lowest cost. Along with the data of Experiments I 

and II, this assumption was used to guide the development of a computational cognitive 
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model of learning and performance on the experimental task. The model, built using ACT-

R/PM, is described in the section that follows.  

ACT-R/PM MODEL 

This section presents the second, analytical, phase of this two-phased research 

effort. Data from the first, empirical, phase were used to constrain the behavior of a 

computational cognitive model built using ACT-R/PM (Byrne & Anderson, 1998). The 

model interacts with the same interfaces as the participants. As such, its performance is 

constrained to coincide with key attributes of participants' behavior, from fine-grained 

components of interaction such as eye and mouse movements to higher order measures 

such as the decreased performance time resulting from location learning. I begin with an 

overview of the relevant components of ACT-R/PM, then describe the model and its fit 

to the data, and conclude with a discussion of the implications of the model for a more 

general account of location learning. 

ACT-R/PM Overview 

ACT-R (Anderson & Lebiere, 1998) is a production system-based cognitive 

architecture (Newell, 1990) that assumes two kinds of memory: declarative memory and 

procedural memory. Declarative memory contains chunks of factual knowledge and past 

goals. Each chunk is a member of some category and has some number of slots, which 

can contain other chunks. Procedural memory contains production rules of the form: IF 

<goal-specification> and <optional-memory-retrievals> THEN <goal-action>. The primary 
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control structure is a last-in, first-out goal stack with the top goal determining which 

production rules are candidates to be fired.  

New declarative memory chunks are added to the system by virtue of either 

being popped off the goal stack or being encoded from the (simulated) external 

environment. Whenever a chunk is about to be created that is identical to a chunk 

currently in memory, these chunks are merged together. This merging process means 

that there will be only one canonical chunk in memory for a given piece of declarative 

knowledge.  

A recent extension to ACT-R, the perceptual-motor component (Byrne & 

Anderson, 1998), allows for actions such as eye and mouse movements to occur in 

parallel with cognition. One primary benefit of this component is that it enables ACT-R 

models to interact with the same software as that used by human participants, thus 

enforcing constraints on the flow of information and execution of interface actions.  

The primary ACT-R/PM sub-component implicated in location learning is the vision 

module, so the process of moving attention to screen objects will be discussed in some 

detail. This process begins with a production rule that sets off a search for an object 

with specific features (e.g., color, shape) in the visual icon. The visual icon is a structure 

containing low-level descriptions of all objects contained in the model’s visual task 

environment (i.e., the computer display). This process, if successful, creates a 

declarative memory chunk representing the location of a candidate object. If a chunk 

representing that location already exists in declarative memory, the module merges that 

chunk instead of creating a new one. The resulting visual-location chunk can then be 

used as an argument in an instruction to move visual attention to that location. After a 
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delay of 185 milliseconds (which is meant to simulate the time required to move visual 

attention), a chunk representing the object itself is created and thus made available to 

the production rules in procedural memory. 

Activation Learning 

At any given time, each chunk in ACT-R’s declarative memory has an activation 

level associated with it which is the sum of its base level activation (which reflects the 

log prior odds that a chunk is needed) and the activation being spread to it from the 

current activation sources (which are the chunks contained in slots of the current goal 

and slots of the current object of visual attention). The activation being spread from the 

activation sources is calculated based on the associative strength from each activation 

source to each chunk that the production is trying to retrieve from memory. This 

associative strength represents the log likelihood that the chunk being retrieved is 

needed given that the activation source is in the goal context. Activation levels are a 

critical determinant in the behavior of a model in that if a chunk's activation is below a 

threshold value, the chunk cannot be retrieved and the production rule fails. 

Both base level activation and associative strength can be learned. In base level 

learning, the base level activations of chunks increase each time a chunk is successfully 

retrieved or merged, but decrease as a function of decay over time. This mechanism 

works such that base level activation for a given chunk increases as a power function of 

practice and decreases as a power function of delay between uses.  

Associative strength learning is best described in the form of an example: let 

chunk AS be an activation source (e.g., in a goal slot) and chunk MR be a chunk to be 

retrieved (as specified in a production rule). The associative strength between AS and 
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MR depends on a number of factors, including: the number of chunks that contain AS, 

the number of times MR has been retrieved when AS was an activation source, and the 

number of times AS has been an activation source. The interassociative strength 

between AS and MR increases as a function of the number of times AS has acted as a 

retrieval cue for MR, but decreases relative to the number of other chunks which contain 

AS and the number of times AS has been an activation source. This decrease in 

associative strength relative to the number of chunks which contain AS predicts a fan 

effect. In essence, this means that an activation source which is uniquely associated with 

a chunk to be retrieved will act as a faster and more reliable cue for retrieval than a cue 

which is used often and is common to many chunks. 

As a summary example, if chunk MR is used often it will have a high base-level 

activation and therefore a higher probability of being successfully retrieved. Further, if 

AS is often an activation source when chunk MR is retrieved and is uniquely associated 

with MR, then MR will have an even higher probability of being successfully retrieved 

when AS is an activation source. As the lag between retrievals of chunk MR increases or 

as the number of other chunks which contain AS increases, the probability of successful 

retrieval of MR decreases. 

Search versus Retrieval 

It is possible to have multiple production rules whose conditions match the 

current goal. In this case, the expected gain of each rule determines which rule will be 

tried. The expected gain is a function of the probability of successfully achieving the 

goal, the cost (in time), and the value of the goal. If the rule attempted first fails to 

retrieve the memory chunks specified in its condition side, then the rule itself fails and 
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the next one is tried. This arrangement enables a compute versus retrieve modeling 

paradigm which has been used to model the learning of arithmetic facts (Lebiere & 

Anderson, 1998). In this paradigm, there are two primary rules in direct competition with 

each other: one rule which simply retrieves the answer from memory (i.e., from a past 

problem-solving episode) and the other which sets out to compute the answer (e.g., 

counting on fingers). The retrieve rule is preferred because it has a higher expected gain, 

but is unable to fire initially due to the inability to retrieve the facts from memory (either 

due to non-existence of the fact or sub-threshold activation). As the facts are created 

via the compute production, they are merged into a single chunk that gets a base-level 

and associative activation boost, thus increasing the probability of retrieval in the future. 

Eventually, the activation spread reaches a threshold level, such that the retrieve 

production succeeds and the compute production no longer fires. 

The model of location learning described below uses a variant of this paradigm 

both in the search phase and the evaluation phase of task performance. In the search 

phase, the retrieve rule, instead of retrieving an arithmetic fact chunk, attempts to 

retrieve a past goal in which the currently needed button was clicked, as well as the 

visual-location chunk associated with the button, and instead of computing an answer on 

retrieval failure, the competing rule sets out to conduct a visual search of the display to 

find the desired button. Likewise, in the evaluation phase, if the model cannot retrieve 

the knowledge required to determine if the currently attended button is the one 

currently needed, the model will instead rely on a ToolTip to determine the color 

associated with the button. The details of the model are described below. 
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Model Description and Fit to Data 

There are 35 production rules to model the four conditions. Each condition 

requires a subset of the rules ranging in size from 11 rules for the color-match condition 

to 27 rules for the arbitrary condition. Twenty percent of the rules are common to all 

conditions and the overlap between conditions ranges from 23% for the color-match and 

arbitrary label conditions to 86% for the arbitrary and no-label conditions. 

The model interacts directly with the experimental software used by the 

participants; thus, the model specifies movements of the cursor, mouse clicks, and 

movements of visual attention to objects on screen. For the data reported below, the 

model was run 10 times for each of the four conditions. Data on five aspects of the 

model’s performance, including: performance time, number of buttons attended, average 

button evaluation time, number of ToolTips accessed, and rectangle study time, were 

collected and written to a log file. These above measures were used to assess the fit to 

the human data. 

As described above, the model relies on a search versus retrieve paradigm, so 

the ability to retrieve a needed chunk is a critical component of the model. Because 

acquiring the ability to retrieve a needed chunk (i.e., learning) is accomplished via the 

adjustment of chunk activation values in ACT-R, both base-level activation and 

associative strength learning were enabled for the model runs. To review, base-level 

activation refers to the probability that a chunk is needed and is sensitive to usage 

patterns such that it increases with each use and decreases with delay between uses. 

Associative activation provides an adjustment to base-level activation to make it 
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sensitive to the current (goal or external) context, e.g., retrieving the chunk 

representing a mailbox icon is more likely when a visual representation of a mailbox is the 

focus of visual attention.  

 

Table 9. ACT-R parameter values used in the model and their associated defaults (in 
parentheses). 

Parameter Value Brief Description 

Activation Noise [:ans] 0.7 (0.5) Cycle to cycle noise added to activation values of 
chunks 

Associative Learning [:al] 1.0 (1.0) Weighting of prior associative strengths 

Base-Level Learning [:bll] 0.3 (0.5) Decay and learning rate for base-level activation 

Expected Gain Noise [:egs] 0.1 (0.0) Cycle-to-cycle noise added to the expected gain 
of an instantiation 

Latency Factor [:lf] 2.0 (1.0) Scaling factor mapping activation values to 
latency 

Retrieval Threshold [:rt] 2.3 (0.0) Minimum activation value for successful chunk 
retrieval 

 

The ACT-R parameter settings, summarized in Table 9, were held constant for all 

conditions. In the interest of limiting degrees of freedom required for the model’s fits, an 

attempt was made to leave parameter values at their defaults. When the defaults were 

inadequate, values were adjusted with the twin goals of minimally deviating from the 

default value and simultaneously fitting all five performance measures described above 

for all four conditions. Given that there were 16 blocks of trials, four conditions, and five 

performance measures being modeled, the parameters in Table 9 were used to fit 320 
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data points. For a more detailed description of the parameter values, the interested 

reader is pointed to Appendix E1. 

The description of the model is organized by the major phases of task 

performance: the search phase and the evaluation phase. The discussion will refer to 

various tables that contain descriptive versions of the key production rules. These rules 

are presented in ACT-R/PM syntax, along with brief descriptions, in Appendix E. To 

provide a high-level overview, a summary of the key assumptions underlying the model’s 

behavior is presented in Table 10. 

Search Phase 

Encode Color and Get Label 

When a trial begins, the model first encodes the color of the rectangle and 

pushes a goal to locate the button that applies that color. Once the goal color has been 

encoded, the model attempts to put the chunk representing the label of the currently 

needed button in the locate goal, unless the model is running in the color-match 

condition. This is not attempted in the color-match condition because the goal color 

itself represents the label of the currently needed button (i.e., they are the same chunk), 

so a separate procedure for encoding the label is not performed.  

In the meaningful condition, the model fires a rule named MN-RETRIEVE-LABEL that 

gets the name of the goal color from the goal color chunk and stores it in the locate 

goal. This rule always succeeds, under the assumption that, for the participants, the 

name of the color is closely associated with color itself (i.e., the word red is highly 

associated with the perceptual experience of red). 
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Table 10. Summary of the behavior of the model in the four conditions for the two phases of 
performance. Values in parentheses refer to the section of Appendix E containing the syntax. 

Search Phase 

 ENCODE COLOR (E4) 
  - All conditions begin by encoding the color of the rectangle 
 GET LABEL (E5) 
  - The color-match condition skips this phase as the rectangle color and label are represented by the 

same chunk 
  - The meaningful condition always succeeds in accessing the name of the rectangle color  
  - The arbitrary condition attempts to retrieve the label of the button that applies the rectangle color 

– these retrievals fail at first but eventually succeed in later blocks 
  - The no-label condition always encodes the fact that the button is blank 
 DETERMINE LOCATION (E6) 
  - The color-match condition relies on the pop-out effect to locate the currently-needed button 
  - The meaningful, arbitrary and no-label conditions attempt to retrieve a past use of the currently 

needed button and its location before undertaking a search of the screen 
  - The process of moving attention to a button location is noisy for all conditions, such that on 12% 

of the trials, visual attention lands on a button adjacent to the intended one 
 

Evaluation Phase 

 ENCODE LABEL (E7) 
  - All conditions first encode the label on the button currently being attended 
 COMPARE (E8) 
  - The color-match condition uses a label-matching strategy, comparing the label on the current 

button with the rectangle color 
  - The meaningful condition uses a label-matching strategy, comparing the label on the current 

button with the label previously retrieved 
  - The arbitrary condition, if the label was previously retrieved, uses a label-matching strategy, 

comparing the retrieved label with the current label 
  - The no-label condition and arbitrary condition (if label not retrieved) use a location-recognition 

strategy, attempting to retrieve a past use of the currently attended button and its location, and 
comparing the color it applied with the rectangle color - if cannot retrieve past use of button waits 
for ToolTip and compares ToolTip color to rectangle color 

 TRY AGAIN (E9) 
  - The color-match condition conducts another pre-attentive search for the correct button 
  - The meaningful condition, on 30% of the trials encodes a button chunk representing the current 

(wrong) button - the arbitrary and no-label conditions do this on 50% of the trials 
  - The controlled search conditions on half of the trials attempt to retrieve the location of the 

currently needed button and on the other half move attention to the nearest unattended button. 
 CLICK BUTTON (E10) 
  - All conditions click the correct button once it has been found 
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In the no-label condition, a rule called ARB-NL-RETRIEVE-LABEL-FAIL fires that places a 

chunk called blank in the locate goal. The blank chunk does not have to be retrieved 

from memory, under the assumption that the participants did not need to explicitly 

retrieve the fact that the currently needed button had no label, i.e., because none of the 

buttons had labels.  

In the arbitrary condition, a rule called ARB-RETRIEVE-LABEL fires that attempts to 

retrieve a past use of the button that applies the goal color and also tries to retrieve the 

chunk representing its label. If this rule succeeds, then the label chunk is placed in a goal 

slot. If it fails, then ARB-NL-RETRIEVE-LABEL-FAIL fires, placing the blank chunk in the goal 

slot. In order for this retrieval to be successful, the combined base-level activation and 

associative strength from the goal-color chunk must exceed the retrieval threshold. As 

can be seen in Figure 17, which shows the proportion of trials in which the label was 

retrieved over blocks for the arbitrary condition, this process occurs somewhat gradually 

but by the end of the run the model is retrieving the label chunk on 92% of the trials. As 

will be discussed later, the success of this retrieval has important implications in the 

evaluation phase. 

Determine Location 

After the locate goal’s label slot has been filled, the three controlled search-

groups rely on the same retrieve rule for locating the currently needed button. The 

other, color-match, group is assumed to be relying on a pre-attentive search and thus 

not relying on memory retrieval. A descriptive representation of these rules appears in 

Table 11. As can be seen in this table, the pre-attentive rule sets out to locate an object 

on the screen with a color that matches the color of the rectangle, pushes a color-
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button subgoal to evaluate the object, and directs visual attention and the mouse to the 

object's location. This rule relies on the ACT-R/PM vision module described above, so it 

always fires successfully. It is thus not subject to the production rule competition in the 

search versus retrieve paradigm. 

 

Figure 17. Mean proportion of trials per block in arbitrary condition in which label chunk was 
successfully retrieved. Error bars represent standard error 

 

The retrieve rule for the controlled search conditions, FIND-BUTTON-RETRIEVE, 

requires two successful chunk retrievals: one is the chunk encoding a past color-button 

goal involving the currently needed button and the other is the visual-location chunk 

that was created by ACT-R/PM in a previous movement of attention to that button 

(location-chunk). The find-button-retrieve rule is attempted first. If it succeeds, it directs 
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visual attention and the cursor to the location specified by the location chunk and 

pushes a new color-button subgoal to evaluate the button at that location. If it fails, 

then the search rule, FIND-BUTTON-RANDOM-GUESS, is attempted which checks that the 

retrieve rule has failed enough times (the number of retrieval attempts varies somewhat 

between conditions - this will be discussed later). If the search rule succeeds, visual 

attention and the cursor are moved to the location of a randomly-selected button and a 

color-button subgoal is pushed to evaluate that button. If the search rule fails, then FIND-

BUTTON-RETRIEVE-FAIL fires. This rule increments the failed retrieval count and leaves the 

goal unmodified so that FIND-BUTTON-RETRIEVE rule will try again on the next cycle.  

The past color-button goal chunks the model is attempting to retrieve in FIND-

BUTTON-RETRIEVE have three slots containing information about the attributes of the 

button: the does slot contains the color applied by the button, the label slot contains 

the button's label, and the loc slot contains the button's location. These slots are filled 

in with the appropriate chunks as the model completes a trial. When a color-button goal 

is popped (after the correct button has been located), if the button had been encoded 

previously, then the new button chunk will be identical to a pre-existing chunk and thus, 

the two chunks will be merged into a single chunk. Therefore, over the course of the 

model run there will be a single color-button chunk for each of the 12 buttons, enabling 

base-level activation learning and associative strength learning for these chunks.  

There are two key chunks acting as activation sources when the FIND-BUTTON-

RETRIEVE rule is attempted: the goal color chunk and the label chunk, if it was retrieved. 

These chunks are contained in the loc and label slots of the color-button chunk, so their 

presence in the goal has the potential to increase the probability that the button chunk 
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will be retrieved. It turns out, however, that spreading activation can be a double-edged 

sword due to the fan effect. In the case of the no-label condition, because all of the 

buttons have the same blank chunk in the label slot, the activation spread to the color-

button chunk is less than that for the meaningful or arbitrary conditions, where the label 

chunk is unique to a given button. This results in a slight decrease in the probability and 

speed of button retrieval in the no-label condition and is intended to represent the non-

distinctiveness of the buttons in this condition. 

 

Table 11. Text descriptions of production rules used for the four conditions in the determine-
location sub-phase of task performance. Production rule names are underlined. The ACT-R 
syntax may be found in Appendix E. 

Color-Match (Pop-Out) 

FIND-BUTTON-PRE-ATTENTIVE 
IF the goal is to locate the required button 
 and the location of the button is currently unknown 
 and there is a button-percept on screen whose color matches the goal-color 
 (and the motor-module is free) 
THEN  
 move attention and the cursor to the location of that percept 
 and set a subgoal to evaluate the button at that location 

 

Arbitrary, Meaningful and No-Label (Location-Retrieve) 

FIND-BUTTON-RETRIEVE 
IF the goal is to locate the required button 
 and the location of the button is currently unknown 
 and there is a memory trace of using a button that does goal-color 
 and there is a memory trace of the location of that button 
 (and the motor-module is free) 
THEN  
 move attention and the cursor to the location of that button 
 and set a subgoal to evaluate the button at that location 
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FIND-BUTTON-RANDOM-GUESS 
IF the goal is to locate the required button 
 and the location of the button is currently unknown 
 and there is a button-percept on screen 
 and the required number of retrieval attempts have failed 
 (and the vision and motor-module are free) 
THEN  
 move attention and the cursor to the location of that percept 
 and set a subgoal to evaluate the button at that location 

FIND-BUTTON-RETRIEVE-FAIL 
IF the goal is to locate the required button 
 and the location of the button is currently unknown 
 and there is a button-percept on screen 
THEN  
 increment the retrieval attempts count 

 

As previously mentioned, the three controlled search conditions vary somewhat 

in the number of times the FIND-BUTTON-RETRIEVE rule will be attempted before FIND-BUTTON-

RANDOM-GUESS fires. The model assumes that the additional time taken by the no-label and 

arbitrary groups over the meaningful and color-match groups found in the data (see 

Figure 13) is being used for additional attempts to retrieve the currently needed color-

button chunk and its location. Based on the qualitative properties of Figure 13, the 

number of attempts was set 1 for the meaningful condition, 2 for the arbitrary 

condition, and 3 for the no-label condition. The increased number of retrieval attempts in 

the no-label condition helps the model overcome the decreased probability of 

successfully firing the FIND-BUTTON-RETRIEVE rule resulting from the large fan from the 

blank chunk to color-button chunk.  

The rectangle study times (i.e., the time spent attending to the colored rectangle 

at the beginning of a trial) generated by the model are presented in Figure 18. As can be 

seen in this figure, the controlled search groups all show a gradual decrease in the 

amount of time spent attending to the center over blocks. This is due to a combined 
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reduction in the time to retrieve the label, color-button, and location chunks as well as a 

reduction in the number of retrieval attempts before FIND-BUTTON-RETRIEVE succeeds. The 

model’s fit to the data is quite good at r2 = .88 (see Table 12 for mean absolute 

deviations by condition). 

Approximate-Trials 

Once the model has pushed the color-button goal, the next step involves moving 

visual attention and the cursor to that location. Here the approximate-trials phenomenon 

is worked into the model. This phenomenon was attributed to either noise in eye 

movements and/or noise in location memory. This issue was not satisfactorily resolved 

based on the empirical data, so the model makes no strong commitment as to the true 

cause. The model simply mimics the effect by adding noise to the location chunk sent to 

ACT-R/PM's vision module. Without the addition of this noise, the vision module will 

accurately shift attention to the object at the x and y coordinate contained in the 

location chunk. The noise added to the location chunk results in attention being shifted 

to a button adjacent to the correct one on approximately 12% of the trials, just as in 

the empirical data.  
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Figure 18. Mean time spent by the model attending to the center rectangle by block and label 
condition 

 

This noise is added to the commands to move visual attention and the cursor on 

the action sides of both the FIND-BUTTON-PRE-ATTENTIVE search rule and in the FIND-BUTTON-

RETRIEVE rule. The addition of this noise in the FIND-BUTTON-PRE-ATTENTIVE rule may be taken 

as a tentative assumption of a speed/accuracy trade-off in the eye-movement from the 

rectangle to the button. The addition of the noise to the controlled-search retrieve rule 

may be taken as a tentative assumption of imprecise location knowledge as well as a 

speed/accuracy trade-off in the eye-movement. The effects of these assumptions on 

the model will be discussed in detail later. 
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Table 12. Mean absolute deviations of model fit by behavioral measure and condition along with 
overall r2 values. 

 

Label Condition 

Center 
Rectangle Time 

(seconds) 

Buttons 
Evaluated 

(buttons/trial) 

ToolTip 
Accesses 
(tips/trial) 

Average 
Evaluation Time 

(seconds) 

Performance 
Time 

(seconds) 

Color-Match 0.11 0.18 0.00 0.10 0.11 

Meaningful 0.06 0.47 0.01 0.06 0.20 

Arbitrary 0.19 0.37 0.13 0.19 0.40 

No-Label 0.15 0.27 0.43 0.18 0.82 

Overall Deviation 0.13 0.32 0.14 0.13 0.38 

Overall r2 .88 .88 .94 .89 .94 

 Figure 18 Figure 19 Figure 20 Figure 21 Figure 22 

 

 

Number of Buttons Evaluated 

Subject to the noise just described, the ability to successfully retrieve, or in the 

case of the color-match condition, pre-attentively determine, the location of the 

currently needed button reduces the number of buttons evaluated over blocks. The data 

from Experiment II are presented in Figure 14, and Figure 19 shows the results of the 

model run, which reveals a good fit (r2 = .88; see Table 12 for mean absolute deviations 

by condition). As in the data, the number of buttons evaluated in the color-match 

condition remains steady throughout the blocks at about 1.5 buttons per trial. The pre-

attentive search conducted by the model for this condition precludes the need to 

conduct an extensive search of the screen, thus keeping the value quite low. The value 
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consistently exceeds a perfect value of 1, however; due to the location noise added to 

the ACT-R/PM vision module. 

The controlled-search conditions start off at an average of 6.3 buttons per trial 

in block 1, slightly higher than in the data, and gradually decrease to about 1.5 buttons 

per trial by block 10. This effect is due to the model eventually attaining the ability to 

retrieve the required button and location chunks in the search phase. Successful 

retrieval, in turn, enables the retrieve rule to fire instead of the random search rule, thus 

decreasing the number of buttons to which the model had to shift attention on a given 

trial. As in the data, these three label conditions show a similar rate of decrease.  

Evaluation Phase 

Encode-Label 

For all conditions, the model begins the evaluation phase by encoding the label on 

the currently attended button and placing the label-chunk in the color-button goal. For 

the arbitrary and meaningful conditions, this rule is ENCODE-LABEL, for the no-label 

condition it is NL-ENCODE-LABEL, and for the color match condition it is COLOR-ENCODE-LABEL. 

In the color-match condition, the chunk is placed in the label slot and in the other 

conditions it is placed in the crnt-label slot. The model then sets out to determine 

whether or not the currently attended button is the one currently needed. Descriptive 

versions of the rules for how the four label conditions proceed from here are presented 

in Tables 13, 14 and 15.  
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Figure 19. Mean number of buttons evaluated by the model by label condition and blocks. 

 

Compare 

For the color-match condition, evaluation simply entails comparing the chunk 

encoding the rectangle color, stored in the does slot of the current color-button goal, to 

the color-chunk just placed in the label slot (see Table 13). If they are the same, then 

COLOR-LABEL-CORRECT fires, putting the button's location in the loc slot of the goal and 

popping the goal. If the slots contain different chunks, then COLOR-LABEL-WRONG fires, 

setting off another pre-attentive search for the goal-color (identical to the one 

conducted in the search phase). 
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Table 13. Text descriptions of production rules used for the color-match condition in the 
evaluation phase of task performance. Strategy is in parentheses and production rule names are 
underlined. The ACT-R syntax may be found in Appendix E, section 8. 

Color-Match (Label-Matching) 

COLOR-LABEL-CORRECT  
IF there is a goal to evaluate the current button 
 and the label of the currently-attended button is the same color as the goal color 
THEN 
 put the location of the button in the goal 
 pop the goal 

COLOR-LABEL-WRONG 
IF there is a goal to evaluate the current button 
 and the label of the currently-attended button is not the same color as the goal color 
 and there is a button-percept on screen whose color matches the goal-color 
 (and the vision and motor-module are free) 
THEN 
 move attention and the cursor to the location of that percept 
 pop the goal 

 

 

The process for the meaningful text condition is similar to the process for the 

color-match condition in that it simply requires a comparison of objects stored in the 

goal (see Table 14). In this case, however, the comparison is between the label-chunk 

stored in the label slot (retrieved in search phase) and the label-chunk in the crnt-label 

slot. If it is the same chunk, MN-LABEL-CORRECT will fire, putting the location of the button 

in the goal's loc slot, and popping the goal. If the slots contain different chunks, then on 

about two thirds of the trials, the MN-LABEL-WRONG rule will fire, which sets up the goal to 

try another button. On the other one-third of the trials, the MN-LABEL-WRONG-ENCODE rule 

fires, meaning that the model will create a color-button chunk representing the currently 

attended button prior to modifying the goal to try again.  

The chunk created by MN-LABEL-WRONG-ENCODE is identical to the chunk that would 

have been created had current button been the correct one, i.e., its slots contain the 
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color associated with the button, its label and its location. In this manner, color-button 

chunks for buttons that had not yet been clicked will exist in declarative memory. This 

arrangement is intended to model participants' encoding of buttons encountered during 

their search for the currently needed button. If the model did not encode color-button 

chunks for non-clicked buttons, then the FIND-BUTTON-RETRIEVE production would never fire 

successfully in the first block of trials (which includes only one use of each of the twelve 

buttons). If the model always encoded non-clicked buttons, then learning would tend to 

occur more quickly than was shown in the data.  

 

Table 14. Text descriptions of production rules used for the meaningful condition in the 
evaluation phase of task performance. Strategy is in parentheses and production rule names are 
underlined. The ACT-R syntax may be found in Appendix E. 

Meaningful (Label-Matching) 

MN-LABEL-CORRECT 
IF there is a goal to evaluate the current button 
 and the label on the currently-attended button matches the label in the goal 
THEN  
 put the location of the currently-attended button in the goal 
 pop the goal 

MN-LABEL-WRONG 
IF there is a goal to evaluate the current button 
 and the label on the currently-attended button does not match the label in the goal 
THEN  
 set the loc slot of the goal to try another button 

MN-LABEL-WRONG-ENCODE 
IF there is a goal to evaluate the current button 
 and the label on the currently-attended button does not match the label in the goal 
THEN  
 encode a memory of having seen the button that does the color associated with the current label 
 set the loc slot of the goal to try another button 
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In the arbitrary condition, the model chooses a different evaluation strategy 

depending on whether the label was successfully retrieved during the search phase (see 

Table 15). If it was, then ARB-LABEL-CORRECT and ARB-LABEL-WRONG will be in competition 

with one another. These rules correspond to the label-matching strategy described 

above for the meaningful group, i.e., the label chunk in the label slot of the color-button 

goal is compared to the label chunk in the crnt-label slot. If the labels match, then the 

location is placed in the loc slot and the goal pops. If the labels do not match then the 

goal is modified to try another button. 

If the arbitrary label was not retrieved during the search phase, then the rules 

considered by the arbitrary and no-label conditions are identical. There are two location-

recognition rules which involve recognizing whether the currently-attended button is the 

correct one, ARB-NL-RECOGNIZE-BUTTON-OK and ARB-NL-RECOGNIZE-BUTTON-WRONG, as well as a 

rule that pushes a subgoal to wait for a ToolTip when the previous rules fail, ARB-NL-

RECOGNIZE-FAIL-GET-TIP. In the first two location-recognition rules, determining whether the 

current button is the correct one requires retrieving both the color-button chunk 

representing a past use of the button and the location chunk representing the button's 

location. The requirement that the location chunk be retrieved is intended to represent 

the claim that the participants in the arbitrary and no-label groups were relying on 

location information in the evaluation phase. The underlying assumption is that the 

retrieval of the location chunk represents the use of location as a criterion for evaluating 

the button.  

Performance differences between the arbitrary and no-label conditions in the 

evaluation phase emerge from two sources. First, in the arbitrary condition, the model 
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can sometimes rely on the faster, label-matching, strategy, whereas in the no-label 

condition the must either rely on the location-recognition strategy or a ToolTip. Second, 

even when attempting the location-recognition strategy, the arbitrary condition has a 

higher probability of retrieving the button and location chunks than the no-label 

condition due the larger fan of the blank label chunk in the no-label condition. As such, 

the location-recognition rules fail more often in the no-label condition resulting in more 

ToolTip requests (see Figure 20). The number of tips accessed by the model correspond 

well with the data from the participants (see Figure 12), with an r2 = .94 (see Table 12 

for mean absolute deviations by condition).  

 

Table 15. Text descriptions of production rules used for the arbitrary and no-label conditions in 
the evaluation phase of task performance. Strategies are in parentheses and production rule names 
are underlined. The ACT-R syntax may be found in Appendix E. 

Arbitrary (Label-Matching) 

ARB-LABEL-CORRECT 
IF there is a goal to evaluate the current button 
 and the label on the currently-attended button matches the label in the goal 
THEN  
 put the location of the currently-attended button in the goal 
 pop the goal 

ARB-LABEL-WRONG 
IF there is a goal to evaluate the current button 
 and the label on the currently-attended button does not match the label in the goal 
THEN  
 set the loc slot of the goal to try another button 

 

No-Label and Arbitrary (Location-Recognition) 

ARB-NL-RECOGNIZE-BUTTON-OK 
IF there is a goal to evaluate the current button 
 and there is a memory trace of using the currently-attended button which indicates that the button 

applies the goal color 
 and there is a memory trace of the location of that button 
THEN  
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 put the location of the currently-attended button in the goal 
 pop the goal 

ARB-NL-RECOGNIZE-BUTTON-WRONG 
IF there is a goal to evaluate the current button 
 and there is a memory trace of using the currently-attended button which indicates that the button 

does not apply the goal color 
 and there is a memory trace of the location of that button 
THEN  
 set the loc slot of the goal to try another button 

ARB-NL-RECOGNIZE-FAIL-GET-TIP 
IF there is a goal to evaluate the current button 
 and attempts to recognize what the button does have failed 
THEN  
 set a subgoal to wait for a ToolTip on the button 
 

When a ToolTip reveals that the current button is not the correct one, on half of 

the trials the model encodes a color-button chunk containing information about the 

current button. This is analogous to the behavior of the MN-LABEL-WRONG-ENCODE rule 

discussed above. For the remaining trials, the model modifies the current color-button 

goal so that the model will then search for another button to evaluate. 
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Figure 20. Mean number of ToolTips accessed by the model by label condition and blocks. 

 

When the model sets out on this search, there are two rules in competition with 

one another. In the SEARCH-NEXT-BUTTON-RETRIEVE rule, the model attempts to retrieve the 

correct color-button button and location chunks (akin to FIND-BUTTON-RETRIEVE) and, if 

successful, moves attention to the retrieved location. In the SEARCH-NEXT-BUTTON rule, the 

model simply moves attention to the closest button it has not yet evaluated. As such, 

the model is not locked into a visual search for an entire trial if FIND-BUTTON-RETRIEVE fails 

to fire in the search phase. The presence of the SEARCH-NEXT-BUTTON-RETRIEVE rule also 

enables the model to recover from approximate-trials relatively quickly. In these trials, 

FIND-BUTTON-RETRIEVE fired successfully, but due to the noise added to command to move 
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attention, the model ended up attending to an incorrect button. Because the required 

retrievals are identical in FIND-BUTTON-RETRIEVE and SEARCH-NEXT-BUTTON-RETRIEVE, the model 

will have a high probability of moving attention to the correct button if SEARCH-NEXT-

BUTTON-RETRIEVE is attempted.  

Average Evaluation Time 

Given the assumptions and rules just described, how well does the model capture 

the differences between label conditions in the evaluation phase? The data for average 

button evaluation time is plotted in Figure 11, and the results from the model are shown 

in Figure 21. The model captures the basic trends in the data, resulting in a good fit (r2 

= .89; see Table 12 for mean absolute deviations by condition). In both figures, the 

arbitrary conditions improve much faster than the no-label conditions, due largely to the 

decreased reliance on ToolTips. In the model, this is also due to the fact that the label-

matching rules for the arbitrary group (ARB-LABEL-CORRECT and ARB-LABEL-WRONG) are faster 

than the location-recognition rules (ARB-NL-RECOGNIZE-BUTTON-OK and ARB-NL-RECOGNIZE-

BUTTON-WRONG) because the latter rules require explicit memory retrievals, whereas the 

former do not. 
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Figure 21. Mean time the model spent attending to each button by label condition and blocks. 

 

Performance Time 

Thus far, it has been shown that the model provides good fits to various fine-

grained components of performance in Experiment II, such as the number of buttons 

evaluated per trial and average evaluation time. The next question is, putting all of the 

component parts of the model together, how well does the model account for the overall 

performance times? Figure 22 shows the trial times generated by the model and Figure 

10 shows the data. A comparison of these figures reveals that the model does a nice job 

of capturing the learning trends and the relative differences between the groups. The fit 

is quite good at r2 = .94 (see Table 12 for mean absolute deviations by condition). Thus, 
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the model captures the performance data at both a coarse and relatively fine grain size 

of analysis. 

 

 

Figure 22. Mean trial times generated by the model by label condition and blocks. 

 

Location Knowledge 

Using the activation-levels of various chunks in the models’ memory at the end of 

the run and some assumptions about the retrievals required for performance on the 

location memory test given at the end of Experiment II, it is possible to derive gross 

predictions about the model's performance on this test. Because the location memory 

test requires that the locations be reconstructed without visual access to the buttons, it 



113 

 

is assumed that accurate performance requires, at minimum, the ability to retrieve both 

the required color-button chunk and its associated location chunk.  

The approach taken in this analysis is to calculate the joint probabilities of 

retrieving the button and location chunks for each condition using chunk activation 

levels at the end of the experiment, and then to compare those probabilities to the 

location memory test scores. As a caveat, it is important to point out that because the 

performance predictions of the model are based solely on the probability of retrieving 

the chunks assumed to be required for successful performance, and the actual 

performance of this test presumably goes beyond the mere ability to retrieve this 

knowledge, the predictions generated in this analysis are expected to only generally 

reflect test performance. 

The probabilities of retrieving the button and location chunks were separately 

calculated via the formula below (Anderson & Lebiere, 1998, p. 74) and multiplied to get 

the joint probability of retrieving them both on a given cycle. 

Probability of retrieval = 1 / 1 + e - ((A - 
τ
 ) / s))  (1) 

In this equation, τ is the activation retrieval threshold, which, as shown in Table 9, 

was set at 2.3, s is the activation noise, set at 0.7, and A is the activation of the chunks 

at the end of block 16. The chunk activations were calculated assuming that the 

appropriate color chunk and label chunk were activation sources. When ACT-R attempts 

to retrieve chunks, each activation source spreads an equal proportion of its inter-

associative strength (ias) to the chunk being retrieved. In the formula below, there are 

two activation sources, so each spreads half of its ias to the chunk being retrieved. 
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A = chunk base-level + (0.5 x color→chunk ias) + (0.5 x label→chunk ias)  (2) 

The joint retrieval probabilities generated from the model are presented in Table 

16 along with the error scores from the location memory test. Because the error scores 

are the average deviation in pixels, these scores map inversely to the retrieval 

probabilities, such that higher retrieval probabilities should result in lower error scores. 

As can be seen in this table, the retrieval probabilities capture the major trend in the 

data, namely, the performance difference between the controlled search and color-

match groups, resulting in a good fit, r2 = .90.  

 

Table 16. Probability of retrieving the button-chunks and location-chunks by condition along with 
mean absolute deviation scores (in pixels) from the Experiment II location memory test. 

Label Condition PButton&Location Location Memory Test Score 

Color-Match 0.33 99.29 

Meaningful 0.93 45.86 

Arbitrary 0.95 29.43 

No-Label 0.75 41.51 

 

This trend is captured via the assumption that the controlled search interfaces 

require retrieval of both the button and location chunks during task performance, 

whereas the color-match interface did not. This results in a higher probability of 

successfully retrieving these chunks at the end of the run in the controlled-search 

conditions than in the color-match condition. As the model completes the task in the 

color-match condition, the color-button and location chunks only receive base-level 

activation boost by virtue of ACT-R's chunk merging mechanism. Because the controlled 
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search groups were also retrieving these chunks: (1) the chunks' base-level activations 

increased at a faster rate, and (2) interassociative strength built up between the 

activation sources and the chunks being retrieved, resulting in a higher probability of 

retrieval. 

Experiment I Performance Disruption 

The above approach was also used to evaluate the extent to which the model 

could account for the performance disruption effects from Experiment I. Specifically, the 

fit to the Location Knowledge Scores was assessed. Location knowledge score is the 

proportion of Directs and Verifies in the assessment blocks; i.e., trials in which the 

participants located and clicked the correct button, and in doing so either accessed no 

tips (Direct) or accessed a ToolTip on only the correct button (Verify). Given the 

structure of the FIND-BUTTON-RETRIEVE rule in Table 11, to locate the correct button, the 

participants would have had to retrieve both the correct color-button chunk and location 

chunk. On failure to retrieve these chunks, the model would conduct a random search of 

the screen. Thus, it is assumed that the probability of retrieving these chunks can be 

used to predict the model's ability to recover if the labels were suddenly removed.  

The activation values used to calculate the retrieval probabilities were calculated 

as they were above (see Equation 2) and were sampled at trials 90 and 450 from the 

model run. The activation level sampled at trial 90 corresponds to the early assessment 

from Experiment I (5 blocks of experience) and the activation sampled at trial 450 

corresponds to the late assessment (25 blocks of experience).  

The retrieval probabilities were calculated in a slightly different manner than for 

the location memory test analysis. As indicated in the description of the model, the no-
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label condition tries the FIND-BUTTON-RETRIEVE rule three times before just guessing a 

location, thus increasing the joint probability of retrieving the button and location chunks 

somewhat. When the labels were removed from the buttons in Experiment I, all of the 

groups were faced with an interface identical to that of the no-label group, effectively 

placing them all in the no-label condition after that point. Thus, in calculating the 

retrieval probabilities from the model, it was assumed that all of the conditions would, 

like the no-label condition, attempt to retrieve the button and location chunks (i.e., 

attempt find-button-retrieve) three times before guessing a location. The following 

formula for calculating the joint probabilities therefore assumes three retrieval attempts. 

P(button & location) = 1 - (1 - (P(color-button) x P(location)))3 (3) 

Table 17 shows the location knowledge scores from the early and late 

assessment blocks by group for Experiment I and the associated retrieval probabilities 

generated from the model. In general, the probabilities from the model map reasonably 

well to the data, with an r2 = .81. The model captures the major trends in the data, with 

the color-match group predicted to perform worse than the controlled search groups in 

both early and late assessment, and with all groups predicted to perform better in the 

late assessment than the early assessment. 

 

Table 17. Probability of retrieving the button-and location-chunks by condition mapped to the 
Location Knowledge Score from Experiment I assessment trials. Predictions generated from the 
model are in parentheses. 

Assessment Time Label Condition Location Knowledge Score 

Early Color-Match 0.52 (0.41) 

 Meaningful 0.78 (0.97) 
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 Arbitrary 0.87 (0.98) 

 No-Label 0.82 (0.87) 

Late Color-Match 0.79 (0.91) 

 Meaningful 0.96 (0.99) 

 Arbitrary 0.99 (0.99) 

 No-Label 0.97 (0.99) 

 

The error in prediction comes largely from the model's under-prediction of the 

performance of the color-match group and over-prediction of the meaningful and 

arbitrary groups in the early assessment block. In the model, the activation levels for the 

color-match condition increase solely due to the increases in base-level activation that 

result from merging of identical chunks; i.e., because the button and location chunks are 

never being retrieved, no source spread develops from the label or color-chunks. Thus, 

the activation levels, and therefore the retrieval probabilities, for this condition increase 

at a much more gradual rate than for the other groups. The rate of activation increase 

for the model is more gradual than in the data. The model also slightly over-predicts the 

performance of the arbitrary and meaningful text groups in the early assessment. Unlike 

the color-match condition, the activation levels and thus retrieval probabilities for the 

button and location chunks in these conditions are increasing too quickly. 

Summary 

Overall, the model provides a compelling account of the critical components of 

the data from both experiments. The model captures the trends in the eye and 
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performance data from Experiment II, with fits ranging from .88 to .94 (see Table 12). 

Although performance on the location memory test was not modeled, an analysis of the 

retrieval probabilities for button-chunks and location-chunks for each of the label 

conditions revealed that the model could capture relative differences in test scores 

between groups. Likewise, the retrieval probabilities were also able to provide an account 

of performance disruption shown by the groups in Experiment I.  

An underlying assumption of the model is that participants behaved rationally, 

seeking maximum gain at minimum cost. As such, participants in the various conditions 

adopted the least-effort strategies allowed by their interfaces, yet were shown to be 

equally fast with enough practice. The least effort strategies chosen by participants 

tended to be display-based; i.e., they enabled participants to rely on perceptually 

available information rather than memory retrievals. As summarized in Table 18 and 

discussed in more detail below, the model assumes that participants only adopted a 

memory-intensive means of interaction when a display-based strategy was not available, 

such as in the case of the controlled search groups in the search phase, or the arbitrary 

and no-label groups in the evaluation phase.  

 

Table 18. Assumed strategy use by task phase and label condition. Display-based strategies are in 
italics. 

Label Condition Search Phase Evaluation Phase 

Color-Match Pop-Out Label-Matching 

Meaningful Location-Retrieval Label-Matching 

Arbitrary Location-Retrieval Label-Matching/ Location-Recognition 
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No-Label Location-Retrieval Location-Recognition 

 

The lowest cost, color-match, condition (see Table 1) provided participants with 

the opportunity to rely on the pre-attentive, pop-out effect, a fast and accurate means 

of locating and evaluating the currently-needed button. The data showed that 

participants attended to very few buttons per trial and showed no significant 

improvement in performance over blocks, suggesting that they took the opportunity to 

rely on the informative perceptual cues in the interface. The model captured this 

behavior by relying on a pre-attentive search to locate the currently needed button in 

the search phase and using a label-matching strategy in the evaluation phase.  

When forced to rely on their location knowledge in the assessment blocks of 

Experiment I or in the location memory test from Experiment II, participants in the color-

match condition were shown to perform more poorly than participants in other 

conditions. The ability of the model to capture the performance on these tests relied on 

ACT-R's activation learning mechanisms. Because the production rule implementation of 

the display-based strategies assumed to be adopted by the color-match participants do 

not require memory retrievals, the base-level activations and associative strengths for 

the chunks required by the production rule implementations of the memory-intensive 

strategies did not increase at as fast a rate as they did for the other groups. Thus, when 

these button and location chunks needed to be retrieved, their relatively low activation 

levels resulted in a lower probability of retrieval than the other groups. The probability of 

retrieval of these chunks does increase as the model completes trials, however; and is 
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thus consistent with experimental data indicating location knowledge increased as a 

function of experience.  

The model also assumes that the controlled search groups relied on least effort 

strategies when possible. In the search phase, these groups learned and used the 

locations of the buttons to direct visual attention rather than continuing to rely on the 

more time consuming visual search of the screen. This was manifested in a decrease 

from (almost) chance performance in the number of buttons evaluated per trial in block 

1 to a single button per trial in later blocks. The model exhibits this behavior through its 

preference for the FIND-BUTTON-RETRIEVE rule over the FIND-BUTTON-RANDOM-GUESS RULE, such 

that it attempts to retrieve the location of the currently needed button prior to 

conducting a search.  

In the evaluation phase, the meaningful group spent a small and constant amount 

of time per button. The model accounts for this by assuming that this group had prior 

knowledge of the relationship between colors and the words describing them and was 

using this knowledge in a display-based, label-matching strategy. The model can always 

retrieve and compare the target label to the labels on the buttons being evaluated.  

Because no prior relationship existed between the colors and the icons used in 

the arbitrary condition, participants in this group could not use the label match strategy 

unless they had learned the association between the colors and icons. The accuracy 

score from the icon memory test given to the arbitrary group in Experiment I was quite 

high, at 81%, indicating that participants had indeed learned these associations. In the 

arbitrary condition, the model attempts and eventually succeeds in retrieving the target 

label, thus allowing it to use the display-based label-match strategy. Prior to successful 
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retrieval of the target label, the model attempts the more effortful and time-consuming 

location-recognition rules (ARB-NL-RECOGNIZE-BUTTON-OK and ARB-NL-RECOGNIZE-BUTTON-

WRONG), which often fail early in the run, thus resulting in reliance on a ToolTip for 

evaluation. As in the data, the average button evaluation times for the model (see Figure 

21) start off roughly equivalent to the no-label group in block 1, but show a 

comparatively rapid decrease due to successful label retrievals and use of the label-

match strategy. 

Participants in the no-label condition exhibited a much more gradual decrease in 

average button evaluation time as compared to the arbitrary group. In the model, this is 

due to sustained reliance on the location-recognition rules (ARB-NL-RECOGNIZE-BUTTON-OK 

and ARB-NL-RECOGNIZE-BUTTON-WRONG), which have a decreased probability of successfully 

matching due to the large fan from the blank label chunk to the 12 color-button chunks. 

The non-distinctiveness of the buttons' visual appearance decreases the probability of 

being able to retrieve the needed color-button chunk, and thus the location-recognition 

rules fail, leading to more lingering reliance on ToolTips (see Figure 20) and increased 

button evaluation time (see Figure 21).  

Limitations of the Model 

The model has little to say about the inherent cause of the disproportionate 

number of approximate-trials. As previously stated, the model only addresses this effect 

to the extent that it mimics the behavioral effects. This is accomplished by adding noise 

to the location chunk passed to ACT-R/PM's vision module. The effect of excluding this 

noise from the model run is essentially to decrease the number of buttons evaluated and 
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the trial times. For example, the model running under the color-match condition will 

always only attend to one button. Likewise, once the model can retrieve the button-

chunks and location-chunks in the controlled search conditions, it will always move visual 

attention directly to the correct button. From a performance perspective, the addition 

of noise improves the fits to the data by preventing it from systematically 

underestimating the relevant values in the data. In mapping this assumption to human 

behavior, the absence of noise would correspond to consistent and perfectly accurate 

saccades to the precise locations of intended targets. 

Another potential limitation of the model is that it does not include any strategic 

intention to learn the locations of items; the model engages in an incidental type of 

learning. It is possible that participants could have undertaken to learn the locations of 

items in order to improve performance via some rehearsal strategy. Indeed, a few 

participants admitted to using rehearsal and other, more complicated, strategies for 

encoding the associations between labels, colors, buttons and locations. It is important 

to point out, however, that any intentional rehearsal or retrieval strategy would tap the 

same ACT-R sub-symbolic declarative learning mechanisms relied upon by the model, i.e., 

the base-level and associative learning mechanisms. 

Theoretical Implications of the Model 

So what does the model have to say about the question of whether spatial 

information is encoded automatically? As described in the literature review, studies 

examining this claim typically involve single presentations of stimuli followed by a 

recognition or recall test (Lansdale, 1991; Naveh-Benjamin, 1987; Naveh-Benjamin, 
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1988). When recognition or recall is poor, this is taken as evidence against automatic 

encoding. What these paradigms seem to be tapping is the ability to recognize or 

retrieve the required information from memory, not whether the information was actually 

encoded. This distinction is made clear in the model. Because the ACT-R/PM vision 

module encodes a visual-location chunk for each location attended by the model, a 

potentially retrievable knowledge structure representing that location will exist in 

declarative memory. Thus, encoding of location is not deliberate but rather a by-product 

of visual attention. Hence the ACT-R architecture serves to instantiate a particular sense 

of the phrase “automatic encoding”. If the model has attended to the location only a few 

times, however; the probability of retrieving the location chunk is quite low due to a sub-

threshold activation level. Thus, the subsequent retrieval of encoded location knowledge 

is not guaranteed but rather probabilistic. 

Multiple visits to a particular location result in a boost of the base-level activation 

of its chunk, and therefore in an increase in the probability of the chunk's subsequent 

retrieval. This predicts that the probability of successfully retrieving a location chunk will 

increase as a by-product of having attended to that location. The probability of retrieval 

will increase more quickly in tasks which require repeated shifts of attention to objects 

that remain in constant locations. Further, these probabilities will increase irrespective of 

explicit intent to learn locations, although strategies such as rehearsal would be 

expected to speed up the learning process, i.e., by increasing base-level activations and 

associative strength. 

The model's account of location learning does not require the addition of any 

new perceptual or cognitive mechanisms to ACT-R/PM; it relies on the same ACT-R 
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mechanisms that underlie the learning of typical declarative knowledge, such as 

arithmetic facts, (e.g., Lebiere & Anderson, 1998). Once encoded by the vision module 

and placed into declarative memory, location knowledge is no different from other 

declarative knowledge: it is subject to power-law decay, increases in activation, and 

associative strength learning. These mechanisms, used to provide accounts of 

performance on various other tasks, were able to provide a compelling account of this 

previously unmodeled phenomenon. Thus, the model inherited the constraints as well as 

the previous successes of these mechanisms from previous modeling efforts. In turn, the 

success of this modeling effort provides additional support for their explanatory power.  

At a general level, three primary implications for a theory of location learning 

emerge from this modeling effort: (1) locations are encoded as a by-product of 

attention, (2) once encoded in memory, location knowledge is subject to the same 

mechanisms as other declarative knowledge, such as associative learning and decay, 

such that, (3) the ability to retrieve location knowledge, like other knowledge (e.g., a 

phone number), requires repetition, practice, or explicit rehearsal. It is important to note 

that these implications are not specific to the structure of the model, per se, but rather 

emerge from the default behavior of the vision module and the declarative learning 

mechanisms of ACT-R/PM.  
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CONCLUSIONS 

The locations of screen objects are central and necessary components to direct 

manipulation; screen objects must be located, pointed at and clicked on. Knowledge of 

the locations of sought-after objects can significantly reduce the visual search space, 

and thus reduce performance times. For this to occur, location knowledge must be 

retrieved from memory and used to direct visual attention. The pace of the process 

leading to successful retrieval of location knowledge was shown to be a function of the 

search cost of using the interface. When the interface provided participants with an 

opportunity to rely on a low-cost, display-based strategy during the search phase of task 

performance (i.e., the pop-out effect), then participants chose this display-based 

strategy over one which required retrieval of location knowledge from memory (i.e., 

controlled search). Participants in this group were shown to learn locations at a slower 

rate than in the controlled-search conditions.  

The level of reliance on location knowledge during the evaluation phase of task 

performance was also shown to be a function of interface cost. When the interface 

supported a display-based strategy in the evaluation phase (i.e., label-matching), 

participants chose this strategy over one that required retrieval of location knowledge 

(i.e., location-recognition). Evidence for strategy differences between the low 

(meaningful) and moderate (arbitrary) evaluation cost groups is provided by the large 

difference between these groups in the ratio of directs (i.e., assessment block trials in 

which participants’ only action was to click the correct button) to verifies (i.e., 



126 

 

assessment block trials in which participants accessed a ToolTip prior to clicking the 

correct button) in Experiment I. Although participants in these groups knew the button 

locations equally well, as evidenced by their equivalent location knowledge scores, 

participants in the meaningful group were unable to successfully use the location-

recognition strategy and thus had to access a ToolTip, resulting in a verify trial instead 

of a direct trial. 

Participants in the arbitrary group could successfully use the location-recognition 

strategy (resulting in Directs instead of Verifies) in the Experiment I assessment blocks 

because they had already been using this strategy. The meaningless labels prevented 

these participants from label-matching until the color-to-icon associations had been 

learned. Thus, by the time the labels were removed, participants had already acquired 

the ability to recognize the button based on its location. The results suggest that the 

arbitrary group did not rely on the location-recognition strategy throughout task 

performance, thus providing evidence for strategy differences between the moderate 

(arbitrary) and high (no-label) evaluation cost groups. The relatively high scores on the 

Experiment I icon memory test indicated that participants in the arbitrary condition did 

eventually learn the color to icon associations. Combined with participant responses to 

this effect in the experiment debriefs and the significantly faster improvement in 

average button evaluation time for the arbitrary group over the no-label group (who 

could not label-match), the results suggest that the arbitrary group did eventually use 

the display-based, label-matching strategy.  

Guided by the constraints and learning mechanisms contained in ACT-R/PM and 

the strategy assumptions outlined above, the Experiment II data were modeled. The 
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model provided a compelling account of key attributes of participants' behavior, from 

fine-grained components of interaction such as eye and mouse movements to higher 

order measures such as the decreased performance time resulting from location learning. 

The explanatory power of the model was also able to extend beyond the Experiment II 

task performance data, providing plausible account of the location memory test scores 

from Experiment II and the performance disruption scores from the assessment blocks of 

Experiment I.  

Theoretical Implications 

When analyzed with an eye toward a more general theory of location learning, the 

model produces three main implications: (1) locations are encoded as a by-product of 

attention, (2) once encoded in memory, location knowledge is subject to the same 

mechanisms as other declarative knowledge, such as associative learning and decay, 

such that, (3) the ability to retrieve location knowledge, like other knowledge, requires 

repetition, practice, or explicit rehearsal. The implications rely on a distinction between 

the encoding of locations, which is assumed to occur as a by-product of attentional 

shifts, and the subsequent retrieval of the location knowledge, which is assumed to be 

subject to the same constraints and learning mechanisms as other forms of knowledge. 

This encoding/retrieval distinction has implications for previous research 

investigating the question of whether spatial encoding is automatic (e.g., Naveh-

Benjamin, 1987; Naveh-Benjamin, 1988). The location memory tests used in this 

research implicitly required recall or recognition of locations. As such, these tests were 

not measuring spatial encoding directly, but rather the ability of participants to later 
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retrieve that knowledge from memory. Given that participants had only seen the stimuli 

once, and for a relatively short period of time, the model presented above would predict 

that although locations had been encoded (assuming participants attended to the 

objects), retrieval performance would be poor due to sub-threshold activation levels.. 

These theoretical implications originate largely from the ACT-R/PM cognitive 

architecture, rather than from the structure the model itself. The model relies only on 

mechanisms currently included in ACT-R in providing its account -- no new learning 

mechanisms were required. The inheritance of established mechanisms as theoretical 

constraints is a primary benefit to modeling in a cognitive architecture such as ACT-R. 

Implications for Interface Design 

The results of this research effort not only provide an empirical and theoretical 

basis for the positional constancy design guideline, but also demonstrate and explain the 

performance advantages associated with using distinct and/or representative labels on 

objects. The empirical data collected in Experiments I and II provided strong evidence 

that people learn locations and can use this location knowledge to improve task 

performance. The theoretical account of the data provided by the model implies that 

location learning occurs as a by-product of interaction such that, without specific intent 

to do so, users gradually learn the locations of the interface objects to which they 

attend. However, in order for the mechanisms underlying this learning to accomplish 

their task, the object locations must remain constant.  

Based on the behavior of the model, variable object locations would hamper 

location learning in two key ways. First, the base-level activation boost resulting from 
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repeated shifts of attention to locations would be dispersed among the various chunks 

representing the locations in which the object appeared, resulting in a decrease the 

probability of retrieving any of the multiple location chunks. Second, to the extent that 

interface objects are represented in a manner similar to the color-button chunks used in 

the model, (i.e., including a loc slot containing the location of the object), there would be 

a distinct object chunk for each location in which the object resided; because the 

contents of the loc slot would not be identical, the chunks would fail to merge. In turn, 

the existence of multiple memory representations of the object would not only disperse 

the base-level activation boost from repeated uses, but also could result in an erroneous 

shift of attention due the retrieval of an out-dated object, i.e., one containing an 

incorrect location chunk.  

The performance advantages of using distinct and representative labels on 

interface objects were demonstrated in the data in the average button evaluation times 

shown in Figure 11. The advantage to having distinct labels becomes clear in a 

comparison between the performance of the no-label and arbitrary groups in this figure. 

In the model, the relative performance in the no-label condition suffers primarily due to 

the inability of this condition to rely on the faster label-matching strategy. To improve 

performance (i.e., not resort to accessing a ToolTip), this condition had to gradually 

acquire the ability to retrieve the chunks required by the location-recognition strategy. 

The difficulty in acquiring this ability was exacerbated by the large fan between the 

single, blank, chunk representing the (lack of a) button label, and the color-button 

chunks the model was trying to retrieve. Thus, distinct labels not only enable use of the 
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label-matching strategy, but also engender the advantages of having a unique retrieval 

cue.  

The advantage to having object labels that are representative of the underlying 

function of the object is demonstrated in a comparison between the arbitrary and 

meaningful groups in Figure 11. Due to the close association between the colors and 

text labels, the model could always retrieve the target label in the meaningful condition 

and use it in conjunction with the display-based, label-matching strategy. In the arbitrary 

condition, the model could not use label-matching until it had learned the color to icon 

association; and learning this association occurred gradually, due to the initially weak 

relationship between the colors and icons. Thus, labels representative of the function of 

an interface object not only support early use of the label-matching strategy, but also 

prevent users from having to learn to associate weakly associated items.  

The data and model presented in this research highlight the pervasiveness of 

location learning and the central role location knowledge plays in the skilled use of a 

graphical user interface. To the extent that interface object locations remain constant, 

users will eventually learn those locations and can use this location knowledge to limit 

visual search. If object locations vary, then location knowledge is rendered useless at 

best and misleading at worst, thus requiring a potentially time consuming exhaustive 

visual search of the screen with each episode of interaction.  

Future Directions 

Several interesting issues arose in this research that warrant further 

investigation. One major outstanding question concerns the nature of the approximate-
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trials phenomenon found in Experiments I and II. The cause of the disproportionate 

number of tips, erroneous clicks and saccades to buttons adjacent to the correct ones 

was not unambiguously determined in the course of this research. Future research 

should attempt to tease apart the relative contributions of error in saccade accuracy 

versus error in the precision of location memory.  

The presence of the approximate-trials phenomenon, and in particular the 

questions it raises about the precision of location memory, also points to a deeper 

theoretical issue related to the representation of locations in ACT-R/PM. At present, 

location chunks represent precise locations on the screen, using Cartesian coordinates. It 

may be the case that locations should be able to be represented in a less discrete 

manner, such as in zones, quadrants, or in qualitative categories such as “top” or 

“bottom”. It is quite likely that the ways in which people choose to spatially carve up the 

visual space is person- and task-specific (indeed there was some evidence for this in 

responses from participants in the Experiment I debriefing session). As such, a 

mechanism for functionally combining location chunks into higher order representations 

would be a means of maintaining the discrete, precise representation of locations, but 

also enabling the modeler to represent person- or task-specific higher order 

representations as appropriate. Determining the nature of these higher order 

representations could be an avenue of future research used to guide development of the 

vision module in ACT-R/PM. 
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